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This paper analyses material issues of development of Li-ion batteries to store electrical energy. The 

performance of the battery is improved by developing the high energy density cathode materials at Nano 

level. This paper explains the synthesis of most interesting cathode material Lithium Manganese Spinel 

and its derivatives like transition metal oxide (LiNi0.5Mn1.5O4) using Co-Precipitation chemical method; it 

is one of the eco-friendly ,effective, economic and easy preparation method. The structural features of 

LiNi0.5Mn1.5O4  was characterized by XRD – analysis indicated that prepared sample mainly belong to cubic 

crystal form with Fd3m space group ,with lattice parameter a  8.265 and average crystal size of 31.59 nm 

and compared the experimental results with computation details from first principle computation methods 

with Quantum wise Atomistix Tool Kit (ATK),Virtual Nano Lab. First principle computation methods pro-

vide important role in emerging and optimizing this electrode material. In this study we present an over-

view of the computation approach aimed at building LiNi0.5Mn1.5O4 crystal as cathode for Lithium ion bat-

tery. We show each significant property can be related to the structural component in the material and can 

be computed from first principle. By direct comparison with experimental results, we assume to interpret 

that first principle computation can help to accelerate the design & development of LiNi0.5Mn1.5O4 as  

cathode material of lithium ion battery for energy storage. 
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1. INTRODUCTION 
 

There is a current global need for storage of electrical 

energy. Future generations of rechargeable lithium bat-

teries are required to power portable electronic devices, 

store electricity generated from renewable sources, and 

hybrid electric vehicle applications. Li-ion offers higher 

energy density, longer cycle life, and no memory effect 

compared to lead acid batteries. In order to develop most 

economic ecol-friendly and efficient battery with devel-

opment of low cost material as cathode at Nano scale. 

Commercially available Lithium ion batteries pres-

ently use LiCoO2, LiNiO2, LiNiyCO1 – yO2 as cathode ma-

terials in LIBs, but they are considered to be more ex-

pensive and toxic. The LiMn2O4 has been studied expan-

sively as a cathode material for LIB because it is rela-

tively inexpensive and echo friendly.Nano structured 

materials possess a huge surface area. As the particle 

size is reduced to Nano scale, large surface area is avail-

able hence their electrical, magnetic and chemical prop-

erties gets improved. Regarding to the electrical proper-

ties, as the surface area increases it capacity increases 

there by voltage and power. 

Nano technology is the best tool for achieving break-

through in Li-ion battery electrode material. In order to 

improve the performance of batteries it is desired to de-

velop high energy density cathode materials using Nano 

materials. Lithium Manganese Spinel and its derivatives 

like transition metal oxide is one of the most interesting 

cathode materials with several advantages such as non-

toxicity, stability, easy preparation, low cost material, 

abundance, high safety, environmental compatibility, 

good cycling properties and good storage capability[1].  

The isotropic structure of Lithium Manganese Spinel 

provides a 3D network for fast Lithium insertion and 

desertion [2]. All Li ions are in the cathode sides initially 

and the battery system is assembled in “discharged” sta-

tus. While charging, Li ions are extracted from the cath-

ode host, solvate into and move through the non-aqueous 

electrolyte, and intercalate into the anode host. Mean-

while, electrons also move from cathode to anode 

through the outside current collectors forming an electric 

circuit. The chemical potential of Li is much higher in 

the anode than in the cathode, thus the electric energy is 

stored in the form of (electro) chemical energy. Such pro-

cess is reversed when the battery is discharging where 

the electrochemical energy is released in the form of 

electric energy. The equilibrium voltage difference be-

tween the two electrodes, also referred to as the open 

circuit voltage depends on the difference of the Li chemi-

cal potential between the anode and cathode. LiMn2O4 is 

one of the materials currently used as an active cathode 

material in commercial batteries and has an open circuit 

voltage of more than 4 V with respect to metallic lithium. 

Such high cell voltage, typical for transition metal ox-

ides, combined with a relatively high charge-storage ca-

pacity, highlights the potential of these materials in 

high-energy density rechargeable batteries [3-6]. 

LiMn2O4 was doped with Nickel, doping did not ap-

pear to change the basic LiMn2O4 structure but 

slightly change the lattice parameters due to atom 

size effect [7-9]. 

Molecular dynamics (MD) simulations were carried 

out to investigate the local structural disorder in 

LiMn2O4 spinel. Small but significant shifts of lithium 

and oxygen atom positions from the high symmetry sites 

of the Fd3m lattice were observed. The geometric struc-

ture and electronic properties of LiMxMn2 – xO4 (M  Ni or 
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Cu) surface can be studied at atomic scale through first 

principle calculation to allow enhanced understanding of 

the nature of the material surface and also studied the 

stability and electronic structure of the LiMn1.5Ni0.5O4 

(001) and (100) surfaces is metallic due to the contribu-

tion of surface Mn and Ni atoms[10, 11]. The (010) sur-

face exhibits most stable termination which favors the 

Lithium diffusion in one dimension path way the elec-

tronic structure of LiMn1.5Ni0.5O4, (010) surface is quite 

similar to that of the bulk. In this paper a computer cal-

culations were obtained using Density functional theory. 

By comparing the calculation results of the band gap, 

conductive properties and formation of energy between 

the adsorption surface and bulk material will reveal the 

electro-chemical performance of LiMn2O4 and provide a 

theoretical foundation for large scale production [12]. 

The computer based simulations starts with the most 

basic properties of the elements and physical principles, 

therefore they can give the structural and electronic 

properties of the materials without the disturbance of 

the side-effect that could happen during the synthesis or 

characterization processes. However, since there are a 

lot of approximations in the theory and algorithm, com-

puter-based computation can only simulate materials 

with periodic structures and the absolute values of the 

calculated results are correct only in a certain accuracy 

range. Therefore it is more important to compare the 

trend rather than the absolute value when use the com-

putation results to explain the experimental phenome-

non or predict the unknown properties. Calculation were 

performed using Atomistix Tool Kit simulation in Quan-

tum Wise software based on Density functional theory 

the cut off energy of the plane wave was set at 500 eV in 

reciprocal K space[10-18].  

The band structure of LiMn2O4 at the Fermi level is 

shown in figure 4. The band gap is 1.23 eV which is 

smaller than the calculated one of the bulk (2.38 eV). In 

terms of proposed diagram of electronic structure in 

LiNixMn2 – xO4 during the charging Process, electrons are 

taken from the manganese eg level, and, after being used 

up, are taken from the eg level of nickel. A binding ener-

gy of electron in eg level of Mn and Ni ions are estimated 

to be 1.5-1.6 eV and 2.1 eV, respectively, This is accom-

panied by a step lowering of the Fermi level by the 0.5-

0.6 eV, corresponding to the jumping the Li / LiNixMn2 –

 xO4 cathode potential. This leads to a higher charge-

discharge potential. However, the above mentioned 

mechanism of the increase of intercalation voltage in 

LiNixMn2 – xO4 compared with pure LiMn2O4 is only a 

qualitative analysis. The structural and electrochemical 

features of pure spinel and doped samples with Ni and 

Cu separately were investigated and they belong cubic 

crystal form with Fd 3m space group or primitive simple 

cubic (P4332) depends on its synthetic routes [6]. The 

phase central spinel is more promising to become cath-

ode material. The Mn3 + and Mn4 + ions as well as the 

doping metal ions as in LiMn2O4 structure, occupy the 

octahedral (16d) sites and Lithium occupy tetrahedral 

(8A) sites and oxygen (32e) sides [7]. Doping did not ap-

pear to change the basic LiMn2O4 structure, but slightly 

change the lattice parameter due to atomic size effect. 

Comparison between experimental and theoretical data 

exhibit good fitting of peak positions obtained in XRD [8-

11]. 

Table 1 – Lattice co-ordinates of spinel Li-Mn-O. Lattice con-

stant a  8.265 from XRD result 
 

Atom Site Wyckoff positions 

x\a y\b z\c 

Li 8a 0 0 0 

Mn 16d 0.625 0.625 0.625 

O 32e 0.3873 0.3873 0.3873 
 

 
 

Fig. 1 – Cubic spinel with Fd3m space group LiMn2 – xMxO4 

 

2. EXPERIMENTAL DETAILS 
 

2.1 Materials Preparation 
 

LiMn2O4 and LiNi0.5Mn1.5O4 powders were synthesized 

by reacting a stoichiometric mixture of Li(CH3COO)· 

2H2O(AR, 99 %), Mn(NO3)2 (AR, 50 % solution), and 

Ni(NO3)2·6H2O(AR, 99 %). The above chemicals were 

mixed at a predetermined molar ratio of Li : Mn  1 : 2 or 

Li : Mn : Ni  1 : 1.5 : 0.5, in distilled water. The pH of the 

mixed solution was maintained 7.5 by adding ammonium 

hydroxide solution [NH3·H2O (AR, 25 %) [12]. The excess 

water was removed by ultrasonic irradiation stirring in a 

home made mini ultrasonic cleaner (50 W, 28 kHz) for 

about 5 h at 80 °C, and the metal precipitate was formed. 

The metal precipitate was dried in vacuum drying oven 

for 12 h at 110 °C in order to dry precursors. Then the 

precursors were heat treated at 700 °C for 6 h at ambient 

condition, and then air-cooled to room temperature, yield-

ing dark powders. After through grinding powder samples 

were obtained [13-16]. 

 

2.2 Structural Characterization 
 

The crystal phases of the synthesized powder were 

determined by X-ray Diffraction(XRD, Bruker D8 & Ad-

vance, Germany) using Cu Kα [20-24] as variation 

sources (40 kV, step size 0.02, scan rate 0.5  per min in 

the range 2   (20-80). 

 

3.  RESULTS AND DISCUSSION 
 

3.1 X-ray diffraction 
 

Figure shows the XRD pattern of the synthesised 

product all the diffraction peaks corresponding to 

spinel structure with space group of Fd3m [17] and 

diffraction data is in good conformity with the stand-

ard diffraction data of spinel compound.  The average 

grain size of the samples was calculated using Scher-

er’s formula as 31.59 nm, d spacing of lattice planes 

depends on the size of the unit cell and determines 

the position of the peaks [18]. 
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Fig. 2 – XRD pattern of Li Mn1.5Ni0.5O4 
 

Constructive interference of X-ray radiation occurs 

in a material when Bragg’s law is satisfied 
 

 2dsin   n   
 

Where d is the distance between equivalent atomic 

planes,  is the angle between the incident beam and 

these planes, n is an integer and  is wavelength. 

The cubic structure of LiMn1.5Ni0.5O4  studied in this 

paper facilitates the determination of the lattice pa-

rameter (a) from one diffraction peak according to: 
 

 

Where h, k, l are Miller indices of measured reflection.  

lattice parameter of LiMn1.5Ni0.5O4 determined and is 

equal to a  8.265 Å and volume  564.665 Å3. 

Strain of the crystal is determined from strain 

equation 
 

 e    

 

and its average value is 0.002864.The line width and 

shape of the peaks derived from conditions of measuring 

particle size of the sample material. Li insertion / de-

insertion and size depends up on synthesis methods 

LiMn1.5Ni0.5O4 can lead to higher charge and discharge 

rates [19]. 
 

Table 2 – Lattice constants and size of spinel Li Mn1.5Ni0.5O4 
(Experimental Results) 

 

Structure 
Space 

Group 

Lattice pa-

rameter(Å) 

LDA 

Lattice pa-

rameter(Å) 

Experimental 

Volume    

(Å3) 

 

Cubic Fd3m 8.3256 8.2654  564.665 

 

3.2 Theoretical Calculations (Results and Dis-

cussion) 

First principle calculations using DFT in LDA (Lo-

cal Density Approximation) approximation have 

demonstrated the ability to model the structural as-

pects of LiMn2O4. All energies were calculated with the 

Quantum Wise Atomistix Tool Kit (ATK) simulation 

package. A plane wave basis set was chosen. The re-

sults compiled in table (IV) were calculated for primi-

tive unit cell. All energies were per formula unit. 

LiMn2O4 has significant stabilization energy. 

Crystals are important whenever we wish to perform 

atomistic simulations of large or infinite system. The 

conventional unit cell of LiMn2O4 has 56 atoms  

(Li-8, Mn-16,O-32). To speed up our calculations we have 

used the primitive unit cell. Free energies [23] of chemi-

cal reactions were calculated and show in table (IV). 

 

3.3 Device Configuration  
 

In ATK, a device configuration is a way of repre-

senting the atomic structure of two semi-infinite elec-

trodes and some different structure between them. By 

using VNL in ATK device LiMn1.5Ni0.5O4 was construct-

ed. The device geometry constructed in builder was 

sent to script generator and optimized, then calculation 

and analysis of transmission spectrum were performed. 

To speed up calculation, set density mesh cut-off and 

energy range was adjusted, self-energy calculation to 

Krylov (fastest method). Script was sent to job manager 

to compute transportation calculations and repeat it for 

various bias voltages. Transmission spectrum results 

were visualized as shown in fig. 3. I-V curve of a device 

was obtained with current as a function of bias voltage. 

At different bias I-V curve and conductance were ob-

tained as shown in fig. 4 and 5. Device density of states 

and total energy were also computed. First principle 

calculations offer an excellent way to predict the Li 

intercalation voltage in metal oxides. The predictive 

capabilities of this technique create a unique way to 

design new battery materials [20-22]. 
 

Table 3 – Selected lattice coordinate inside unit cell of spinel 

LiMn1.5Ni0.5O4 

 

Atoms 
Lattice coordinates 

X(Å) Y(Å) Z(Å) 

Lithium 0 0 0 

Lithium 2.065 2.065 2.065 

Oxygen 3.199098 3.199098 3.199098 

Oxygen 5.060902 5.060902 3.199098 

Oxygen 5.060902 3.199098 5.060902 

Oxygen 3.199098 5.060902 5.060902 

Oxygen 5.264098 5.264098 7.125902 

Oxygen 7.125902 7.125902 7.125902 

Oxygen 5.264098 7.125902 5.264098 

Oxygen 7.125902 5.264098 5.264098 

Manganese 5.1625 5.1625 5.1625 

Manganese 3.0975 3.0975 5.1625 

Nickel 3.0975 5.1625 3.0975 

Nickel 5.1625 3.0975 3.0975 

 

 
 

Fig. 3 – Transmission Spectrum of device LiMn1.5Ni0.5O4 
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Fig. 4 – I-V charecteristic LiMn1.5Ni0.5O4 

 

 
 

Fig. 5 – Conductance of LiMn1.5Ni0.5O4 

 

Table 4 – Total energy calculations of LiMn1.5Ni0.5O4 

 

Energy  

component 

Before  

Optimization 

After  

Optimization 

External-field 0.0000 eV 8.23106 eV 

Exchange  

Correlation 

– 2172.4484 eV – 4331.82060 eV 

Electrostatic 8279.86396 eV 16846.7571 eV 

Kinetic 4496.76739 eV 9083.24743 eV 

Total Energy 5955.60544 eV 12176.29857 eV 
 

The band structure of intercalation compounds has 

been studied extensively with electronic structure 

methods. In this rigid band picture, Li intercalation 

causes the Fermi level to rise, and intercalation curve, 

the variation of the voltage with the Li content of the 

cathode, hence reflects the shape of the density of 

states at the Fermi level. In this rigid-band model, the 

Fermi level remains unchanged as Li is intercalated, 

but the density of states translates to lower energies. 

Computed band structure of LiMn1.5Ni0.5O4 experimen-

tally determined lattice parameters and found that the 

bands derived from the metal s orbital shifted upon 

intercalation of lithium. Attempts to obtain intercala-

tion voltages with first principles calculations are lim-

ited and have focused on band structure of the material 

.To examine the splitting of the energy bands, we calcu-

lated the change in electronic energy [23]. 

The electronic density of states (DOS) are plotted 

for LiMn1.5Ni0.5O4 shown in Fig. 5. By computing the 

total energy of a lithiated compound it is possible to 

predict average intercalation voltage for Li. The fact 

 

that metastable structures may be used for the interca-

lation compounds in rechargeable batteries they oper-

ate near room temperatures [24]. As demonstrated in 

this paper , first-principles methods can be used to pre-

dict the average intercalation voltage in given structure 

with high accuracy.The capability of predicting interca-

lation voltages without the need for experimental data 

also allowed us to systematically investigate the effect 

of metal,cation,and structure,by computing the interca-

lation voltage for many structures [25]. 

 

 
 

Fig. 6 – Band structure of spinel LiMn1.5Ni0.5O4 

 

 
 

Fig. 7 – Density of states of spinel LiMn1.5Ni0.5O4 

 

4. CONCLUSION 
 

The electro active nano LiMn1.5Ni0.5O4 spinel has been 

synthesized by co-precipitation chemical method with 

subsequent calcination at 700 C for 6 h. Powder X-ray 

diffraction analysis shows that the sample is pure single 

phase and good crystallization. We have demonstrated 

achievements in predicting structural and electronic 

properties of LiMn1.5Ni0.5O4 using DFT based first princi-

ple methods. These capabilities establish first principle 

computation as an invaluable tool in the design of elec-

trode material at nano scale for Lithium ion battery. 
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