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Mn-doped AIIBIVCV

2 semiconductors bulk crystals were grown by direct melting of base components 

with fast cooling. Structural and magnetic properties of samples were investigated. Analysis of the tem-

perature dependence of the magnetization reveals three types of magnetic species: the substitutional Mn 

ions making Mn complexes (especially dimers), the MnAs micro- and nanosize precepitates. 
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1. INTRODUCTION 
 

Today a new branch of electronics, called spintron-

ics, is developing rapidly. In spintronic devices is used 

materials, which allow to control the spin and charge 

degrees of freedom [1]. This is their advantage over 

traditional electronic devices. One of main difficulties 

of spin components is the absence of materials, which 

can operate in temperatures similar to traditional elec-

tronics. Using of Fe, Co and Ni is not effective, because 

of they have different crystal structure and electronic 

properties with semiconductors. Therefore in the pre-

sent time the search is carried out in different direc-

tions, among which d-elements doping of materials, 

which are used in modern electronics (Si, Ge, III-As 

and others) [1]. One of most perspective materials for 

spintronic applications is Mn-doped GaAs [2]. In the 

past decade many important spintronic applications 

have been realized based on this material, including 

electrical-field control of the Curie temperature and 

magnetization, spin injection into non-magnetic semi-

conductors, tunneling magnetoresistance and electric 

current induced magnetization reversal [3]. However, 

the highest obtained Curie temperatures for GaMnAs 

films (TC  185 K) [4] and for heavily Mn-doped 

(Ga,Mn)As nanowires (TC ~ 200 K) [5] are lower than 

the room temperature. Ternary chalcopyrite semicon-

ductors of the AIIBIVCV
2 system are considered as struc-

tural and electronic counterparts of III-As compounds 

[6]. CdSnAs2, ZnGeAs2, CdSnP2, and ZnGeP2 are “di-

rect” analogues of the InAs, GaAs, InP, and GaP, re-

spectively. They have better solubility of d-elements 

and can easily accept a high concentration of Mn at-

oms, which is a natural property of chalcopyrites used 

as two-cation semiconductor [7]. 

Theoretical estimates of magnetic order in Mn-

doped AIIBIVCV
2 compounds showed that, only 19 of 

them can retain ferromagnetic properties and only with 

higher Mn content [8]. In AIIBIVCV
2 compounds ferro-

magnetism above room temperature was experimental-

ly observed first in single-crystal Cd1 – xMnxGeP2 films 

[9]. Now 8 compounds with high temperature ferro-

magnetic ordering are known among Mn-doped 

AIIBIVCV
2 semiconductors [10]. For such materials the 

highest TC ~ 367 K has been observed for ZnGeAs2, 

doped with Mn [11]. 

It is stimulated interest to elaborate growing pro-

cess of the Mn-doped AIIBIVCV
2 semiconductors, includ-

ing Cd1 – xZnxGeAs2:Mn, ZnSiAs2:Mn bulk crystals and 

to establish correlation among their structural and 

magnetic properties. 

 

2. EXPERIMENTAL DETAILS 
 

The most probable quasi-binary sections in which 

AIIBIVCV
2 compounds can form are the AII - BIVCV

2, 

AII
3CV

2-BIVCV, and BIV-AIICV
2 sections (Fig. 1).[12] The 

most optimal way to synthesize ternary compound is 

through the interaction of the components along the 

BIV-AIICV
2 section. The preparation of the batch along 

this section considerably decreases the free volume in 

synthetic ampules as compared with the batch consist-

ing of individual components. This ensure the prepara-

tion of the stoichiometric composition of the synthe-

sized ternary compound. The preparation of a batch 

along the AII-BIVCV
2 and AII

3CV
2-BIVCV sections is less 

 

  
 

Fig. 1 – Triangulation of the AIIBIVCV
2 system [12] 
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efficient since the BIVCV
2, AII

3CV
2, and BIVCV com-

pounds are more difficult to synthesize than the AIICV
2 

compounds. 

To grow of (Zn,Cd)GeAs2 samples, as starting mate-

rials was used monocrystalline cadmium and zinc  

diarsenides prepared by vertical Bridgman technique, 

high-purity germanium (5N) and manganese (3N). The 

amounts of the starting materials were controlled by 

weighing with accuracy of 0.005 %. Because zinc and 

cadmium diarsenides dissociate upon heating with ar-

senic vapour evolution, small value of arsenic was add-

ed to bathes to adjust stoichiometry. The weight of this 

additional arsenic was calculated from the arsenic par-

tial vapour pressure of ZnAs2 and CdAs2 and the vol-

ume of the ampoule in which the synthesis was carried 

out. The components were prepared as powders with 

average particle sizes of 5-10 m. Total mass of batches 

placed into quartz ampoules was 9-10 g. The ampoules 

were evacuated to 110 – 2 Pa and sealed. The synthesis 

temperature was 1175 K (close to Tm  1148 K of 

ZnGeAs2) and the synthesis duration was 36 h. To pro-

vide maximal solubility of manganese the cooling rate 

was 10-12 K/s (Fig. 2). Prepared samples of 

Zn0.9Cd0.1GeAs2 contained 0; 1.13; and 2.65 mas. % of 

Mn and labeled as #B1, #B2, and #B3, respectively. 

The procedure to prepare of Mn-doped CdGeAs2 was 

like described above for the Zn0.9Cd0.1GeAs2 : Mn. The 

synthesis temperature was 950 K (close to Tm  940 K 

of CdGeAs2). Prepared samples of CdGeAs2 contained 

0.25; 1; and 6 wt % of Mn and labeled as #C1, #C2 and 

#C3, respectively. 
 

 
 

Fig. 2 – Temperature during the synthesis of manganese-

doped Zn0.9Cd0.1GeAs2 
 

Specimens of ZnSiAs2:Mn with various Mn concen-

trations were synthesized by direct melting of high-

purity Si, ZnAs2 and Mn powders at a temperature of 

10 to 15 K above the ZnSiAs2 melting point (1369 K). 

The reaction ZnAs2 + Si  ZnSiAs2 versus time mode is 

shown in Fig. 2b. This method was developed by ana-

lyzing the Zn-Si-As ternary system and its quasibinary 

sections from Ref. [13]. The synthesis of ZnSiAs2 by 

SiAs2-Zn section was complicated by high temperature 

and peritectic nature of SiAs2 melting. If one uses the 

direct melting of Zn, Si, and As in synthesis, it is diffi-

cult to retain stoichiometry because of highly volatile 

arsenic. The synthesis by ZnAs2-Si section is most suit-

able because of congruent ZnAs2 melting and low pres-

sure of As vapor. These section was used earler to 

growth ZnSiAs2:Mn / Si geterostructures [14, 15]. 

Three polycrystalline ZnSiAs2 samples doped with 0, 1 

and 2 wt % Mn, labeled as #E1, #E2 and #E3, respec-

tively, were produced. 

Samples structure was investigate by SmartSPM 

1000 (AIST-NT Co) scanning probe microscope in AFM 

mode. The dc magnetization, M, was investigated with a 

superconducting quantum interference device (SQUID) 

magnetometer (model S600, Cryogenics ltd.). The meas-

urements were performed separately between 3-310 K 

and 260 K-580 K in fields up to B  5 T. The dependence 

of M(T) was measured in B between 5 G and 500 G after 

cooling the samples from 300 K to 3-5 K in zero field 

(B  0.1 G) or in the field of the measurements, yielding 

the data in the zero-field cooled (MZFC) and the field-

cooled (MFC) regimes, respectively. 

 

3. RESULTS AND DISCUSSION 
 

A granular structure was observed in II-IV-As2:Mn 

compounds. For example it can be seen for Mn-doped 

CdGeAs2 (Fig. 3). The mainly part of grains have size 

from 10 nm up to 150 nm. 
 

 
 

 
 

Fig.3 – AFM images of Mn-doped CdGeAs2 samples #C1 

(upper image) and #C3 (down image). Clusters and granular 

structure of samples is clearly visible 
 

The M(T) dependence for samples is complicated. At 

T  100-150 K the M(T) shape is characteristic of the 

ferromagnet with different Curie temperatures  

(Table 1). At low temperatures is seen a sharp increase 

of magnetization with decrease of temperature. This 

can be interpreted as an additional contribution of a 

paramagnetic phase.  

The situations when TC was decreasing up to 320-

330 K with magnetic field decreasing and PM TC be-

longed to the same interval were observed for all other 

Mn-doped AIIBIVCV
2 samples, exhibiting FM ordering. 
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Table 1 – Curie temperatures of ferromagnetic Mn-doped 

AIIBIVCV
2 

 

Compound Sample number TC, K 

Zn0.9Cd0.1GeAs2 #B2 

#B3 

349 

351 

CdGeAs2 #C3 337 

ZnSiAs2 #E1 

#E2 

325 

337 
 

These results give evidence that high-temperature fer-

romagnetism in our samples originates from MnAs phase.  

MnAs is ferromagnetic semimetal. In zero magnetic 

field TC  306 K and at T  TC  the MnAs has hexagonal 

structure [16].  

Samples of AIIBIVCV
2 compounds doped with Mn up 

to 1% wt were paramagnetic. Fig. 4 demonstrate M(T) 

curves for single crystal CdGeAs2 doped with Mn 

0.89 wt % (sample #D2) and 0.006 wt % (sample #D1). 

For sample #D2 M(T) obeys the Langeven function 

 0 coth B BM M B k T k T B      with the mean 

magnetic moment of clusters   7.1 B and a specific 

magnetization M0  1.1 emu/g. For polycrystalline 

sample #C2 these values were   6.6 μB and 

M0  1.3 emu/g. It is in good agreement with results of 

Ref. 17 when   7.1-8.0 B was obtained for CdGeAs2 

doped with Mn from 0.5 up to 6 wt %. The magnetic 

moment of uncoupled Mn2 + ion is (Mn2 +)  5 B. 
 

 
 

Fig. 4 – The temperature dependence of magnetization M(T) 

of sample #E2 in 50 kG. The continuous line represent the 

Langeven function with fitting parameter giving in the text. 

Inset: The temperature dependence of magnetization of 

sample #E1 in 50 kG 
 

The value of magnetic moment ≈ 7 B is bigger than 

is (Mn2 +). Theoretical calculations performed for 

(Ga, Mn)As system showed the possibility of Mn clus-

tering into stable and electronically active dimmer, 

trimmer or tetramer [18]. In these complexes Mn atoms 

placed on the positions in neighbor unit cells and inter-

act antiferromagnetically. Therefore their effective 

magnetic moment is reduced. Mn atoms from complex-

es interact with other type atoms too, especially with 

As. So the most probably value of  for Mn atoms is 

close to (MnAs) ≈ 3.4 B [19].The value of magnetic 

moment ≈ 7 B is support of the assumption that most 

of Mn atoms in lattice formed dimmers. 

Presence of nanosize MnV precipitations was ob-

served by magnetic measurements at low magnetic 

fields. Typical M(T) dependences of AIIBIVCV
2:Mn 

measured in ZFC and FC regimes are shown in Fig. 5. 
 

 
 

Fig. 5 – Temperature dependences of magnetization, 

measured in low magnetic fields: MZFC (circles) and MFC 

(squares) for Zn0.9Cd0.1GeAs2:Mn sample #B2 at B  5 G (open 

symbols), (solid symbols) at B  50 G 
 

The magnetic properties of AIIBIVCV
2:Mn are deter-

mined mostly by small ferromagnetic MnAs particles. 

When T is more or above the blocking temperature the 

thermal fluctuations lead to that assembly of such clus-

ters exhibit superparamagnetic behavior [20]. 

The moment of each particle is stabilized inde-

pendently when anisotropy energy KV (K is the density 

of the anisotropy energy, V is the average volume of the 

particles), becomes enough to counteract the thermal 

excitations about kBT. After removal of the external 

field the moments of the particles relax towards equi-

librium state. When the relaxation time with value 

102 s is used as the criterion for transition to stable 

state the energy barrier must be 25 kBT. Then the 

blocking temperature of FM particles is [21] 
 

 
25

b

B

KV
T

k
  (1) 

 

The susceptibility of a system of arbitrary clusters 

can be written in the form [20]: 
 

    0 1 1
0

T

ZFC

C
T f T dT

T
     (2) 

 

where 0 is ZFC at T  Tb, C is Curie constant for clus-

ters and f(T) is the distribution function of the blocking 

temperatures. Using of the small magnetic field during 

measurements is required to avoid the influence of sta-

ble ferromagnetic (nonsuperparamagnetic) clusters on 

the susceptibility. The low-field contribution to  from 

such kind of clusters is small and depends on T only by 

s. So the first term in eq. 2 represent the contribution 

of stable clusters and the second term correspond to 

contribution of superparamagnetic clusters. Parame-

ters 0 and C depends only on s and can be express as 

s  and s , respectively ( and  are constants). 

Then eq.2 can be written as [20] 
 

    2
1 1

0

1 T

ZFC sT f T dT
T

  
 

  
 

  (3) 

 

After differentiation of eq. 3 with respect to T the 

f(T) can be found as [20] 

   2

1 ZFC

s

Td
f T

dT




 

 
   

 
 (4) 
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Using of this expression together with eq. 1 let to 

calculate in a numerical form the distribution function 

f(R) of the radius of the sphere corresponding to the 

cluster volume 34 3V r . The basic plots of tempera-

ture dependences of K and s for MnAs were taken 

from the ref. 21 and used in interpolation with a ra-

tional beta-spline function. Low temperature parts of 

K(T) and s(T) were found by linear extrapolation. The 

constants  and  are determined by normalizing f(r) to 

unity and using the condition f(r)  0 at r  0. Fitting 

f(R) with Gaussian function: 
 

  
 

22
1

2

r r

f r e 






  (5) 

 

gives the most probable radius of clusters r  and mean-

square deviation  (Table 2). The clusters magnetic 

moment  (Table 2) calculated with expression 

 = 300 K V/ν where the volume ν and magnetic moment 

300 K per MnAs pair are ν ≈ 34 Å3 [22] and 

300 K ≈ 2.3 B [23], respectively. Our values of  agree 

with results of Ref. 24 where   (1.2-2.0)·104 was ob-

tained for Mn-doped ZnSiAs2 without clear explanation 

about the nature of magnetic clusters. The mean clus-

ter radius increase when increase Mn content. At low 

Mn concentrations (sample #E2) f(R) has more complex 

character and described by sum of two Gaussian func-

tions. The same situation was observed in Ref. 20 for 

Zn1 – xMnxAs2. 

Table 2 – Parameters of MnAs nanoclusters in differ-

ent II-VI-As2:Mn samples 
 

Sample r , nm , nm (300 K), B 

#B2 3.7 1.0 1.4·104 

#B3 3.8 1.1 1.6·104 

#E2 2.76 

3.10 

0.72 

0.35 

6.0·103 

8.5·104 

#E3 3.57 0.96 1.3·104 

 

4.  CONCLUSION 
 

In summary, we have investigated the structural 

and magnetic properties of bulk polycrystalline 

AIIBIVCV
2 semiconductors with different Mn contents. 

We have observed their nanocrystalline structure with 

grains size ranged from 10 nm up to 150 nm. Curie 

temperatures of ferromagnetic Mn-doped AIIBIVCV
2 

were in the interval 325-351 K. The high temperature 

ferromagnetic properties were formed by MnAs clusters 

with mean diameter above 3 nm. Some influence of Mn 

complexes was observed. 
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