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This article analyzes the findings from an investigation of magnetic fluid column vibration against 

magnetic field direction and intensity. This article also reviews various applications for the obtained re-

sults. 
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Southwest State University (former Kursk State 

Technical University) researches fundamental proper-

ties of magnetic nanodispersed fluids including their 

rheological characteristics [1]. 

The described stand [2] has been used as test vibra-

tion system with magnetic fluid column as inert ele-

ment. Experimental results show that damping factor 

of certain fluids increases along with increasing mag-

netic field frequency and intensity, however the damp-

ing factor of other fluids decreases along with increas-

ing magnetic field intensity Н  (Fig. 1 and 2). 
 

 
 

Fig. 1 – (Н) graph 
 

Fig. 1 shows the damping factor  against the mag-

netic field intensity Н in the magnetic fluid (MF)  

column between electric magnet poles. (Н) graph in 

less concentrated colloids is characterized by positive 

derivative [8]. 

Fig. 2 shows approximated straight (ν) graph for 

MF-3 with MF column equilibrium stabilized by ring 

magnet. 

 values at the frequency of 32 Hz for two different 

types of MF-3 stabilization (Fig. 1 and 2) are the same 

within the measurement accuracy validating the 

measurement results. 

 
 

Fig. 2 – (ν) graph for MF-3 

 

Conventionally measured (at 20 С) basic parame-

ters of tested kerosene-based magnetite magnetic fluids 

are listed in table 1.  

In table 1,  is magnetic colloid density, Ms is satu-

ration magnetic moment, χ is initial susceptibility, s is 

static viscosity, φ is solid volume fraction. 

If circumference of fluid column side surface is sig-

nificantly longer than viscous wave length  

( 2 v   ) then the damping factor should be cal-

culated according to the Helmholtz equation: 
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Table 1 – Basic parameters of tested magnetic fluids 
 

Sample Carrier fluid , kg/m3 Ms, kA/m χ φ, % s,Pas 

MF-1 Kerosene 1345 – - 8.8 3.1·10 – 3 

MF-2 Kerosene 1294 52 6.3 7.3 3.9·10 – 3 

MF-3 Kerosene 1294 52 6.3 7.3 3.5·10 – 3 

MF-4 Kerosene 1499 60 7.5 10.2 8.1·10 – 3 

MF-5 Kerosene 1500 60 – 10.2 12·10 – 3 
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For small d and ν, if d  2 is true then the damp-

ing factor should be calculated according to the 

Poiseuille equation: 
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Fig. 3 shows  measured values for various frequen-

cies and also it shows predicted (ν) according to the 

equation (1) (solid line) and the equation (2) for infra-

sound (dash line).  
 

 
 

Fig. 3 – Semi-log scale (ν) graph for MF-3 
 

Fig. 4 shows ln(lnν) graphs for MF-3 (dash line) and 

MF-1 (solid line) in case of ring magnet-stabilized mag-

netic fluid column in a resting contact upon air bubble of 

different height. Due to the fact that effective viscosity 

rises along with increasing frequency, frequency de-

pendence of the damping factor is almost direct i. e.  ~ ν 

although the classic dependence is  ~  . 
 

 
 

Fig. 4 – ln(lnν) graph 

One can suggest that excess damping (fig. 3) with 

peculiar relation to vibration frequency (fig. 4) and 

magnetic field intensity (fig. 1) is due to ferrous parti-

cle lagging behind the carrier fluid within viscous wave 

penetration depth hη ( 2h   ). 

Therefore magnetic field changes some characteris-

tics of MF and increases its damping factor. Such fluids 

can be applied in various dampers with adjustable 

magnetic field.  

A sustainable development concept implies that 

human potential will rise and it will demand using new 

hardware to improve the life quality and counter in-

creasing human impact on the environment [3], in-

creasing incidence, and worsening morale [4]. 

The dampers become more common in leg prosthe-

ses.  
 

 
 

Fig. 5 – Prosthesis с with magnetic fluid damper 
 

In USA, prostheses with magnetic fluid dampers 

are already being developed [5] (Fig. 5). These devices 

are featured by magnetically adjustable damper stiff-

ness. 
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