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Electro-optic LiNbO3 thin films were deposited on Si(100) and Si(111) substrates using a radio-

frequency magnetron sputtering process. The piezoelectric properties of the LiNbO3 films were investigat-

ed using the scanning probe microscopy in the piezoresponse mode. The obtained results show the high de-

gree of grains orientation in polycrystalline structure. The piezoelectric modulus (dzz) was estimated to be 

16 pm/V (for LiNbO3 / Si(100)) and 22 pm/V (for LiNbO3 / Si(111)) and the polarization about of 0.37 Cm – 2. 

These values are larger than those reported previously for LiNbO3 films. 
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1. INTRODUCTION 
 

Among the most interesting and promising directions 

in the physics of optics and materials science is the study 

of the synthesis and characterization of thin film gradi-

ent optical structures [1]. The results already obtained in 

this area are of great practical importance. In particular, 

created by ultra-wide range (for a visible, near and mid-

IR range) and deep modulation on the beam splitter, 

reflector less optical phase shifters, compressors femto-

second optical pulses that work in non-prism mode tran-

sient tunneling narrow-band filters in the visible and 

near – infrared regions of the spectrum etc. [2]. 

As the next step in the development of this area is 

important to develop a new class of optical elements - 

gradient optical "transformers" on the basis of gradient 

thin film coatings, i.e. the gradient of thin-film multi-

layer structures, the characteristics of which may vary 

considerably during their work by changing the optical 

thickness of a certain number of sub-elements. For ex-

ample, the reflection of a certain wavelength range will 

change his passing, etc. This will greatly simplify the 

optical circuit devices, in some cases, remove the multi-

ple channels to reduce the weight and dimensions. This 

is possible when creating one-layers in multilayer struc-

tures of electro-optic materials, such as lithium niobate. 

However, this procedure requires the synthesis of die-

lectric substrates oriented both crystallographic direc-

tion and the polarization vector by fine film of lithium 

niobate with 100 nm thickness. 

Oriented polycrystalline lithium niobate (LiNbO3, 

LN) thin films are also of interest for a variety of elec-

tro-optical and acousto-optical applications, including 

integrated device structures containing micro- and opto-

electronic components. The ferroelectric properties of 

LN films were investigated by piezoresponse force mi-

croscopy (PFM), which allows identifying the polariza-

tion direction and the local domain distribution [3]. Pre-

viously [4-6], this method has already been used to vis-

ualize ferroelectric domains in LN films deposited on 

conductive silicon substrates.  

In this article we report on direct investigation of 

domain structures and local piezoelectric properties of 

LiNbO3 thin films by the PFM method. 

 

2. EXPERIMENTAL DETAILS 
 

The LiNbO3 films were deposited on n-type Si (100) 

and Si (111) substrates (  2 Ω·cm) by RF magnetron 

sputtering of the single-crystalline target in Ar / O  1 

atmosphere and under the working pressure of 0.6 Pa. 

The thickness of the LiNbO3 thin films was about 

100 nm. After sputtering process the films were an-

nealed in a furnace at 700 °C for two hours. The piezoe-

lectric properties of the LN thin films were character-

ized by the piezoresponse force microscopy using com-

mercial scanning probe microscopes MFP-3D (Asylum 

Research) and NTEGRA Prima (NT-MDT). Out-of-

plane PFM images of the samples were obtained by 

applying AC voltage (5V peak-to-peak) with the fre-

quency of 5 kHz. To address the DC voltage dependence 

of the local piezoresponse so-called remnant piezoelec-

tric loop (REM hysteresis) were measured by applying 

a sequence of DC voltage pulses with cycling magni-

tude and collecting the PFM signal after each pulse. 

The measurements were done in a DC voltage range –

 40 V ≤ VDC ≤ + 40 V. Both DC voltage pulse duration 

and measuring time were 1 sec. 

 

3. RESULTS AND DISCUSSIONS 
 

The XRD was performed with a θ – 2θ configuration 

and the results for the samples are summarized in Fig. 1. 

The XRD spectra show several peaks from 20º to 60º 

for polycrystalline LiNbO3 films, that correspond to the 

diffraction contribution from the (012), (104), (006), (116). 
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Fig. 1 – XRD spectra and phase analysis for LiNbO3 thin films 

 

The surface morphologies of the LiNbO3 films syn-

thesized on silicon substrates with (100) and (111) ori-

entations observed by PFM as shown in Fig 2a, d.  

The surface roughness was about 6 nm and 8 nm for 

the LiNbO3/Si(100) and LiNbO3/Si(111) hetero-

structures, respectively. This result meets the demands 

for practical wave guiding devices. Lateral relief corre-

spondence grain sub-structure of the LN films with av-

erage grain diameter of 50 nm and 75 nm for the films 

on Si(100) and Si(111) substrates, respectively. 
 

LiNbO3/Si(100) LiNbO3/Si(111) 

  

  

  
 

Fig. 2 – Simultaneously obtained topographic (a, d), ampli-

tude (b, e) and phase (c, f) PFM images for LN thin films, 

sputtered on (100) and (111) oriented silicon substrates 
 

PFM was used to characterize the polarization states 

of the LN films and to determine the piezoelectric con-

stants. Figs. 2b, e and c, f show the amplitude and phase 

PFM images, respectively, obtained simultaneously with 

the topography images. The amplitude of the PFM signal 

corresponds to a local deformation of the sample under an 

alternating electric field i.e. provides values of the local 

piezoelectric coefficient dzz. Phase images show grains 

with «bright» and «dark» contrast, which correspond the 

orientation of the polarization vector up and down rela-

tive to the film plane. 

 

Fig. 3a-c represent the PFM amplitude images ob-

tained at different ac probing voltage values 3 V, 7 V and 

11 V (scan size 1  1 m). It is clear that the piezoresponse 

amplitude increases with the increasing magnitude of the 

AC voltage. Fig. 3d shows the corresponding histograms of 

the amplitude PFM signal for the PFM image obtained by 

ac voltage varied from 1 to 11 V. In both cases this histo-

grams can be identified as Gaussian distributions with a 

single narrow maximum.  
The position of this maximum corresponds to a mean 

piezoresponse signal for a given image. The AC voltage 

dependences of this mean piezoresponse a for LN film 

are shown in Fig. 4. As expected, the piezoresponse am-

plitude increases linearly with the voltage. The mean dzz 

piezoelectric coefficient can be evaluated from the slope 

of these dependences (Fig. 4) according the formula [7]: 
 

 zz

AC

A
d

V
 , (1) 

 

where A (pm) is the piezoresponse amplitude and VAC (V) 

is the amplitude of the applied voltage. The best fit yields 

for LiNbO3/Si(111) heterostructures the value of 

dzz  22 pm/V and for LiNbO3/Si(100) we obtained a slight-

ly smaller dzz  16 pm/V. The measured dzz values are close 

to the d33 value for LN single crystal [8], and nanocrystal-

line particles based on LiNbO3 [9]. 
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Fig. 3 – Out-of-plane PFM amplitude images taken at 3 V (a), 

7 V (b), and 11 V (c), for LiNbO3 thin film, and corresponding 

histograms (d) extracted from PFM amplitude images 
 

On the other hand, the piezoelectric coefficient is 

proportional to the polarization, P: 
 

  02 ,zzd Q P  (2) 

 

where Q is the electrostriction coefficient 

(Q  0.095 m4C – 2 for bulk LN [10]), 0 is the permittivi-

ty of vacuum,  is the relative dielectric permittivity. 

Taking the relative dielectric permittivity of the LN to 

be about 30 at low frequency, the polarization for 

LiNbO3 / Si(111) heterostructure can be estimated to be 

~ 0.37 C·m – 2, which is relatively large in comparison 

with the value reported previously for LN films [11, 12]. 

To get information about the anisotropy of the lon-
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gitudinal piezoelectric coefficient dzz of LN thin films, 

the remnant piezoelectric loops were measured shown 

in Fig. 5. 

 
 

Fig. 4 – The mean PFM amplitude signals versus AC voltage 

for the LN thin film 
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Fig. 5 – REM piezoelectric hysteresis loops for the LiNbO3 

films with different orientations of Si substrate 
 

It is clear that the remnant piezoelectric response for 

the LN films synthesized on Si (111) is larger than for 

the films synthesized on Si (100). Accordance with to 

the imaging principle of the PFM, the value of dzz for 

grains with the polarization vector perpendicular to the 

film surface is higher than that for grains with the polari

zation vector deviating from the direction of the surface 

normal [13]. Therefore, the piezoelectric results shown in 

Fig. 4 and 5 suggest that the presence of differences in the 

values of piezoelectric modules (polarization vector) for LN 

thin films synthesized by varying the substrate orienta-

tion. 

 

4. CONCLUSIONS 
 

Piezoresponse force microscopy technique was used 

to investigate the local piezoelectric properties of the 

electro-optic LiNbO3 thin films. The piezoelectric re-

sponse of the films depends on the crystallographic ori-

entation of the silicon substrate. The piezoelectric coeffi-

cient (dzz) was determined to be 16 pm/V and 22 pm/V 

for LiNbO3/Si(100) and LiNbO3/Si(111) heterostruc-

tures, respectively. The polarization was estimated to be 

~ 0.37 C·m-2. These values are higher than previously 

reported values for LN films. The results indicate that 

one of the problems the solution of which is necessary 

for the creation of electro-optic lithium niobate thin 

films on dielectric layers, namely the high crystallo-

graphic orientation of the structure can be solved by 

means of RF sputtering technology. 
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