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Model of the Elastic Plate Stiffened with the Regular System of Nanorods
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The structural model of the nanocomposite (a thin substrate), with a doubly periodic system of nano-
rods grown on it, is proposed. It is supposed that nanorod (nanotube) elastic moduli have been obtained by
a molecular dynamic method or experimentally, and they are known. The problem is reduced to the inte-
gral equation from which the functionals determining the nanocomposite effective moduli are constructed.

The results of computations are given.
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1. INTRODUCTION

The problem of determining the effective mechani-
cal properties of nanocomposites is widely discussed in
the literature [1-5]. The present work contains the ana-
Iytical solution of the averaging problem of the elastic
properties of the plate (substrate) stiffened by the regu-
lar system of nanorods. A nanorod is defined as the
discrete formation of atoms which interatomic bonds
are realized through the forces of their interaction.
While the interaction between the nanorods takes place
through the material medium (substrate). Therefore,
the nanocomposite mechanic problems can be set and
solved using the structural theory of composite materi-
als in the framework of continuum mechanics [6] tak-
ing into account certain mechanical characteristics of
nanorods, which can be obtained, for example, by ex-
periment or with the molecular dynamics methods
considering the different interactions.

2. PROBLEM FORMULATION

The regular (doubly periodic) system of nanorods
(nanotubes) is grown on a substrate, which is a thin
plate or sufficiently rigid film. They are directed along
the axis Ox and continuously bonded with the sub-
strate (Fig.1). Let us use w1 and w2 (Im w1=0,
Im (w2/w1) > 0) to denote main periods of the structure.
The rod is a segment L with length 2/ where end-points
are a=—1[, b=1. Rods centres form a doubly periodic
system of points P=me1+nw2 (m,n= 0, £1, £2,...).
We denote by (o) (i, j = 1, 2) the average stress acting
in the domain occupied by this system.

Within the framework of the given model the load is
transferred from the substrate to the rod with the help
of tangential stresses qo(t). While composing the equi-
librium equation of the rod element in the direction of
the axis Ox, we express the normal force in the rod via

o~ 4
Fig. 1 — Scheme of the regular structure

Based on the model of the plane stress state [7] the
displacements and stresses in the substrate can be ex-
pressed in terms of two analytic functions in the do-
main under consideration by the formulas

h(z) = 2u(u, +iu,) = kp(2) —2®(2) - P(2) , @)
(07, +099) =4Re ®(2),
(099 — 071 +2i0y5) =2 ZD'(2) +VY(2) ,
D(2) = ¢'(2), ¥(2) =y/'(2).
The resultant vectors of the forces acting in the

structure along any arc is defined by formula (per unit
thickness of the substrate)

(X+iY)= [ (X, +iY,)ds = —ig(z)5. 3)
AB

where
8(2) = p(2) +2D(2) + ().

Integral representations of analytic functions,
which ensure doubly periodic distribution of the stress
tensor in the plate, we take of the form [6]

the linear tangential load of intensity qo(t) &D(z) = _ 1 [@o®St—2)dt+ A, 4)
2r(k+1) 7,
b
P(ty) = [ g,()dt, P(6)=0, (@) = [ gy (¢ (2~ D)t -
ty (1) 272'(/( + 1) L
b 1 _
P@)= —C{qo(t)dt =0, Im¢=0. “orerD) {qo(t) @ (z-t)+tp(z—t) di+A,,
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where k= (3 —v)/(1 + v); v— Poisson's ratio of the sub-
strate material; A1, A2 — constants determined from the
conditions of existence in the structure of the specified
average stress (oi); #(2) and {(2) — the doubly periodic
and the quasi-periodic Weierstrass functions [8]; ¢1(2)
— the special meromorphic function [9], § — substrate
thickness.

3. QUASIPERIODICITY OF THE DISPLACEMENT
VECTOR AND THE RESULTANT VECTOR OF
FORCES ON THE ARC

Integrating the functions (4), we have

Sp(z) = m{%(t)"*(t z)dt+ Az, ®)
51//(2) = m{qo(t)v*(z t)dt -
o1 Doy s TorD(a
2D {qo(t){gol (z-t)+Tp V(2 -t)|dt + Ayz
where [6]

vi(2)=¢ @), 9V ==¢(), oV () =]p (2)dz,
vi(z+0,)-v.(2)=7i+6,,(z+ 0, /2),
8, =2¢(w,/2), (m=1,2)

P (24 0,)~ (@) = 0,8 (&) + Yz + Vi

Yoy = V105 = 6,05 — 050y, 6,0y — Oyt =27l
According to (5), we get
8(z)" = Ao, +BS, (n=1,2), (6)

Sh)[["" = 0,(KA -A)-AB,
- B[5,A-x)+7, | +Bxs,,

zZ+w,

58()" =2m,Re A, + A,b, + B[ 5, +(1-K)5,+7, |,
1
B=——(tq,(t)dt .
2r(k +1){ %)

Let us write the conditions of existence in the struc-
ture of the averaged stresses (o). Assuming, that lat-
tice is a rectangular (w2 = iH), and by using formula (3)
for the resultant vector of forces on the arc, we have

2+,

[(0y,) +i(oy,)|H = —lg(z)\

(7
[<621> +l<622>]a’1 =-ig(2)

z+o,

Conditions (6) and (7) result in the system of equa-
tions for the constant A: and As
H{(0,,) +1(015)}8 = -i{2Re Ao, + A,d, +
+[8, +5,0-K)+ ;72]8}
@, {(013) +i(0p) 18 =i{2Re A o, + Ay, +
+[61 +51(1—r<)+771]B}

The solution to this system is

JJ. NANO- ELECTRON. PHYS. 5, 03020 (2013)

ReA, =6

W B[;r(1+1<)/2 HRes,], (8

A = 5<022>_<611>+27'<612> _
z 2

—%[71’(1 +x)+H(y, —Kc?l)],

F=0H.

In virtue of the structure symmetry it was taken in-
to account that both lattice constants 61, 1, and the
functional B are real quantities.

Thus, the integral representations (4) in the presence
of Egs. (8) are correct in the sense that they provide:
double-periodicity of the stress field in the structure;
quasi-periodicity of the displacement vector and the re-
sultant vector of forces on the arc connecting the congru-
ent points, the existence of the specified average stresses
{o11), {o12), {OP2), at any density satisfying condition

{ q,(t)dt =0. 9)

4. INTEGRAL EQUATIONS OF THE STRUCTURE
SUBSTRATE-NANORODS

According to (2), the deformation ei1 of the sub-
strate along the nanorod axis is defined by the follow-
ing formulaatz=1to € L

2pe; =0, Re {’“/’(Z) —20(2) - 1/7(3)} =
=Re{(k -1)D(2) -2D'(2) - ¥(2)}.

The deformation of the rod at the point t0 € L in view
of (1) is

t)dt ,
EFQiQo()

e, =
where Eo, Fo — the Young's modulus and the nanorod
cross-section area, respectively

By setting deformation of the substrate equal to de-
formation of the rod on L, we get the singular in-
tegrodifferential equation

b
{qo(t)K(t —ty)dt+ B.(t,)] gy ()dt+ M. { q,t)} = N.., (10)

t

K(t)=Re{§(t)+M}’
2k -1

| 2@ +x)?
M.{a®}= {2(% “)F
4 ES
P.ito}= 1+v)(5-3V)E,Fy(t,)’
. 71'(K' +1)6
T 22k -

_(@2x-1)Red, —Rey,
2k -Day

}I tq,(t)dt,
L

[(3 K)XOg9) — (1+K)(crn)]

Where E — the elastic modulus of the substrate materi-
al; 6 and v — the thickness and the Poisson's ratio of the
substrate. The equation (10) combined with the addi-
tional condition (9) clearly determines the solution
qgo(t) on L.
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However, we can not make computations using the
system (9), (10). First, we have to reduce it to the di-
mensionless form and equalize the orders of its terms.

Let us introduce the dimensionless variables

=t 6= =2 g 0=ae,
2}
w="228 (o) = (o) +(oy), D=
o 2 ;

Then, taking into account the decompositions [6],

2]+1

oG (t)=— L zp2]+2w
w

w?p(t) = —2 + 32 +1)py; 0%,
w” j=

2]+1

ap 0= 2j+2)ps 5w

' 1 2j+2
Pajr2 = > ( j ’
mn \ M+ NA
] —
@ m+na
o) = ———— (m,n=0,£1,+2,+,..))
A m,n (m + na)21+3

we represent the system (9), (10) as

T QOG- &,)dE+

(11)
+ﬂ(§o)f q(&)dé+M{q(é)} =N
Where
GRS m[(j—m)p 2=+ Dpfs ]
a2 2j+2 2j+3
M{q(&)} = [0 Br(ic+1)% +

+4g[r2 —(2](—1)7'1]] | 5‘1(5)035}

R p— L

1+v)(3-Vv)E,F, (50)’
N = M[(g —K) <622> _(1 +K)<Gll>:|
4 (o) (o)

P2ji2
_1 Z 22 +2’

ksl 2] +1 j +1 @)
=-1+ jzl[ oz Peiee it Pajis

The additional condition is
1
[q(&)ds=0 (12)
-1

5. NANOCOMPOSITE MODEL

Let us suppose that g¢(&) is the standard solution to
the system of equations (11), (12) determined by formu-
la (where (c11) # 0, (o22) # 0, {(c12) = 0)

q(&) =[(k+1)oy;) +(k—3)0)18¢°(5). (13)
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According to (13) functional B can be written as fol-
lows

_ e _
= o [+ X+ (k=)o)

Where
b, = I £q°(8)dé .

The average deformations in the structure can be
found by formulas from [6]

ul( )‘zm;l

()=
wl

Z+o, Ctg o z+wl

(egg) =—"— 2( )‘ uy(z )‘

Im

2+lul z+w,

e,y =— [u2(z) ul(z)ctga]‘ ul( )\

By performing the prescribed in Eqgs. (6) operations
of the calculation of displacement increments in con-
gruent points and taking into account, that Rewz2 =0 in
case considered here, we obtain the equations of the
structure macromodel.

(e} =(ay)(0,)) +{a, X0,,)

(14)
(ey) ={ay X0} +{ay, X05)

where
1 1 v
<CIH> ZEZE(I‘FA), (a12>:—E(1+A),
_ 1 ) _ (k+1)lzb1"1
(ay) = (E) E(1+v A),A—iF .

As it follows from (14), the macromodulus (ai1) has
the most sufficient changes, the absolute value of (a12) is
equal to ®a11), the value of {(a22)E changes as 1 +O(v?2).
It can be explained by the fact that the rods are orient-
ed along the axis Ox and their presence has insignifi-
cant effect on the shift deformations of the structure.

6. ANALYSIS OF NUMERICAL RESULTS

Let us consider a nanocomposite of tetragonal
structure @i = 100 nm, a2 = wii, which is a silicon sub-
strate with carbon nanotubes (CNTs) grown on it. Ac-
cording to [10], we choose the following mechanical
properties of the substrate material: Young's modulus
of 165 GPa, Poisson's ratio = 0.22. Based on [11], the
Young's modulus of CNTs may vary in range 900-
1800 GPa and the diameter of the tubes is 10-30 nm.
The curves for the nanocomposite relative macromoduli
(Ely=(E))/E i=1,2 and (v")=(W/v are constructed
in the following figures.

Fig. 2, 3 show the relative effective mechanical
properties of the tetragonal structure nanocomposite as
functions of the parameter A=2l/w:. Here the CNT
Young's modulus is Eo= 1800 GPa, thickness of the
substrate is §=150 nm. Plotted in Fig. 2, curves 1-3
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correspond to the moduli (E7),(E;) and (v7), and the

diameter of the nanotube is 30 nm, while Fig. 3 shows
the changes in values of the averaged Young's modulus

(E]) with the nanotube length increasing. The curves

1-3 are constructed for nanotube diameters: 10, 20,
30 nm, respectively.

<E;> i A<v’>A
1.6 y
1.2 — e 5
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Fig. 2 — Dependences of the relative macromoduli of the te-
tragonal structure nanocomposite (w1 = 100 nm) versus pa-
rameter A. Substrate thickness is § = 150 nm, nanotube diam-
eter is 30 nm
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Fig. 3 — Dependences of the relative macromodulus of the
tetragonal structure nanocomposite (100 nm ) as a function of
the parameter A, substrate thickness is § = 150 nm, the curves
1-3 are plotted for nanorods with diameters 10, 20 and 30 nm,
respectively
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Fig. 4 — Dependences of the relative macromodulus of the
tetragonal structure nanocomposite (100 nm )as a function of
the parameter As= 2. The curves 1-5 are constructed for
nanorods with diameter 10, 15, 20, 25 and 30 nm, respective-
ly. The relative nanorod length is A = 0.9
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Fig. 5 — Dependences of the relative macromodulus of the
tetragonal structure nanocomposite (100 nm) as a function of
the parameter Az = Eo/E. The curves 1-3 are plotted for differ-
ent substrate thickness 100, 150, 300 nm, respectively. The
relative nanorod length is A = 0.96

The dependence of the nanocomposite mechanical
characteristics as functions of the substrate thickness
is shown in Fig. 4. The curves 1-5 represent changes of

the macromodulus (E]) versus As;=28@ when the

nanotube diameter is 10, 15, 20, 25 and 30 nm, respec-
tively. Here the Young's modulus of CNTs is
Eo = 1800 GPa, the relative length of the tube is A =0.9.

Let us consider the influence of nanotube Young's
modulus values on the values of nanocomposite mac-
romodulus. Fig. 5 shows the dependence of the macro-

modulus (E]) versus A= Eo/E. The curves 1-3 are plot-

ted for various substrate thickness: 100, 150, 300 nm,
in the case of the fixed relative nanorod length A = 0.96.

7. CONCLUSION

The paper presents the model of the nanocomposite
(the doubly periodic system of nanorods (nanotubes)
grown on a thin substrate) constructed by the regular
structures method. The effective moduli of elasticity of
such medium obtained in the closed form via function-
als built on the solution of singular integral equations
of the first kind, containing the complete set of data
about the geometric and physical properties of the
nanostructure fundamental cell.

As follows from the results, macromoduli strongly
depend on the diameter and length of the nanotubes,
the thickness of the substrate, as well as the mechani-
cal characteristics of the pair substrate-nanorod. Thus,

the relative macromodulus (E;) has the most signifi-
cant changes, the absolute value of relative average
Poisson's ratio (v7) is equal to 1/<Ef>, the value of

(E;) is changed as 1+ O(v2). It can be explained by

the fact that the rods are arranged along the axis Ox,
and their presence has insignificant effect on the shear
strain of the system.

It is possible to solve the inverse problem, i.e. to de-
termine mechanical properties of nanorods, if the effec-
tive modules of substrate — nanorods system are ob-
tained as a result of the experiment. It should be noted
that a stable solution of such problem may be derived
at rather close packing of nanorods in a lattice: the cell
area F'must be of the order /2.
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Mopens ynpyrotii miiacTUHBI HOJKPENJIEHHON PEryJJIIPHON CUCTEMOM HAHOCTE PIKHEH

JLLA. @unemrtunackuit, 10.B. lpamko, I.®. Bypraruas

Cymcruii 2ocydapemaennniii yHusepcumem, ya. Pumckoeo-Kopcarosa, 2, 40007 Cymot, Yipauna

IIpenmnoxena cTpyKTypHAs MOJEJb HAHOKOMIIO3WUTA, IIPEICTABJIAIONIET0 COO0M TOHKYIO IIOIJIONKKY, Ha
KOTOPOI BBEIpAIIEHA TBOSIKOIIEPUOANIECKAs crucTeMa HaHocTepskHei. [Ipenmosmaraercs, ¥to Moy yupyro-
CTH HAHOCTEP:KHS (HAHOTPYOKM) IIOJIyYEeHBI METOA0M MOJIEKYJISPHON JUHAMUKHU WJIM dKCIIEPHUMEHTAJIHBHO U
W3BECTHHL. 3ajia4ya CBeJieHa K MHTETPAJbHOMY YPABHEHUIO, U3 KOTOPOTO IIOJIyYeHBI (DYHKITMOHAIIBI, OIIpe/Ie-
ssornye d(pPeKTUBHBIE MOIYJIN HAaHOKOMIIO3uTa. [IprBe1eHEI pe3yIbTaThl PacueToB.

Knrouessie cinosa: Harmoxommosur, CtpyrrypHas Mogessb, JdhdeKTUBHBIE MOIYJIA YIPYTOCTH.

Monens npy:KHOI IIJIACTUHU MiAKPiNIeHA PETryJasIPHOIO CUCTEMOI0 HAHOCTPUIKHIB

JILA. @uapmruucsruii, 10.B. Hlpamko, I'.®. Bypuaraa

Cymcevruii OeporcasHull yrisepcumem, 8ysi. Pumcoroeo-Kopcakosa, 2, 40007 Cymu, Yipaina

3arnpornoHoBaHa CTPYKTYPHA MOJIeIh HAaHOKOMIIO3UTY, KA MIPeJICTABIEHA Y BUTJIS/Il IIKIQIKY, HA K1
BHPOIIEHA JIBOSKOIIEPIOIUYHA crcTeMa HaHoCcTpw:xHIB. [lepenbavaerbes, 1m0 MOIYJIl MPYKHOCTI HAHOCTPH-
sKHA (HAHOTPYOKM) OTPUMAaHI METOA0M MOJIEKYJIIPHOI JUHAMIKKA a00 eKCIIepMMEHTAJbHO 1 Bimomi. 3amaua
3BeJIeHa JI0 IHTerpaJbHOrO PIBHAHHS, 3 KO0 OTPUMAaHI (DYHKIMIOHAJIH, 1[0 BU3HAYAITH e(DEKTUBHI MOIYJIi

HaHoKoMIo3uTy. [IpuBemeni pesyIbTaTh PO3paxyHKIB.

Knrouori cirosa: Hanorkommosur, Crpykrypra moness, EdexrrBHI Moaystl mpy:KHOCTI.
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