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Non-isothermal Differential scanning calorimetry (DSC) technique was used to study the kinetics of 

first order phase transformation in Ge25Se75 – xSbx glasses. The X-ray diffraction (XRD) technique was em-
ployed to investigate the amorphous and crystalline phases in Ge25Se75 – xSbx glasses. From the heating rate 
dependences of crystallization temperature; the activation energy for crystallization and other kinetics pa-
rameters were derived. The temperature difference (Tc – Tg) and Tc is highest for the samples with 6 % of 
Sb. Hence, Ge25Se69Sb6 glass is most stable. The enthalpy released is found to be less for Ge25Se69Sb6 glass 
which further confirms its maximum stability. The activation energy of crystallization ( Ec) is found to 

vary with compositions indicating a structural change due to the addition of Sb. The crystallization data 
are interpreted in terms of recent analyses developed for non-isothermal conditions. The present investiga-
tion indicates that both the glass transition and the crystallization processes occur in a single stage. 
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1. INTRODUCTION 
 

Amorphous chalcogenide glasses have been investi-
gated extensively over the past few decades. These 

glasses have been widely used in device technology and 

the current interest in these materials centers on X-ray 
imaging and photonics [1]. The relevance of studying 

the phase transformation in these materials has a tech-
nological aspect, since several physical properties 

change in the temperature range of utilization of the 
materials. It is also of fundamental scientific interest, 

since one can obtain useful information on the elemen-
tary processes, which modify the structure of an amor-

phous system, eventually producing stable phases on 
crystallization. The study the first order phase trans-

formation in chalcogenide glasses by the differential 
scanning calorimetry (DSC) method has been widely 

discussed in literatures [2-8]. The first order phase sep-
aration effects are of general interest in chalcogenide 

glasses. It is a term used to describe a phenomenon 
where an initially homogeneous system, such as a liq-

uid, will unmix into two or more finely mixed chemically 

or structurally different, component or phases. Such 
structural effects produce usually pronounced changes 

in glass physical properties including a lowering of the 
glass transition temperature, a lowering of the optical 

band gap, an increase of molar volumes [9]. The phase 
transformation can exist on a variety of length scales 

from nanometers to micrometers or millimeters [9]. For 
the purpose of photonic applications, it is important 

that phase separation be eliminated or at least mini-
mized to length scales much smaller than that the 

wavelengths of light being used. Apart from the tech-
nical importance, the knowledge of crystallization kinet-

ics is very important for a better understanding of 
amorphous structure of such chalcogenide glasses. 

The study of glass transition kinetics in chalcogenide 
glasses is of great importance to establish the thermal 

stability, glass-forming ability and ultimately to deter-

mine the useful range of operating temperatures for a 
specific technological application before the eventual 

crystallization takes place. The glass forming tendency 

of the glassy alloys is related to ease by which melt can 
be cooled with the avoidance of crystal formation. 

Meanwhile, the thermal stability indicates the re-
sistance of crystallization of glassy alloy through the 

nucleation and growth process. To evaluate the glass 
forming tendency and thermal stability of chalcogenide 

glasses, different simple quantitative methods are usu-
ally used. The most commonly used methods are those 

suggested by Kissinger [10] and Ozawa [11], which are 
based on some characteristic temperatures such as the 

glass transition and crystallization temperatures moni-
tored by the differential scanning calorimeter (DSC). 

The present work reports first order phase trans-
formation in amorphous Ge25Se75 – xSbx glasses by using 

non-isothermal DSC measurements. The effect of varia-

tion of Sb content on the thermal stability and glass 
forming tendency has also been studied. In the present 

system, we have used Se as a major content because it 
is widely used as a typical glass-former. The choice of 

selenium is due to its wide commercial importance. Its 
device applications like rectifiers, photocells and switch-

ing memory, etc. have made it attractive. But the pure 
selenium has low sensitivity and short lifetime. In order 

to overcome this difficulty, several workers have used 
certain additives (Ga, Ge, Bi, etc.) for alloying Se to 

some extent. We have chosen germanium as an additive 
material. Germanium is also known to contribute to 

long-term room temperature stability [12]. We have 
incorporated Sb as the third element in Ge-Se alloys. 

The continued scientific interest in Sb based chalco-

genide glasses is due to its potential use in phase 
change optical recording [13-18]. In phase change opti-

cal recording, the recording of information is based on 
writing and erasing of amorphous marks in a crystalli-

zation layer of a phase change material. Since the opti-
cal properties of the amorphous phases are different 

from those of the crystallization phase, the written 
mark can be read out as a contrast in the reflectance. 

Besides sufficient optical contrast between the crystal-
line and amorphous state, the thermal stability and 
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glass forming tendency are one of the most important 

issues in developing phase change materials. In chalco-
genide glasses, glass forming tendency and thermal 

ability of a glassy alloy is related to the ease by which 
melt can be cooled with the avoidance of crystal for-

mation. The thermal stability and glass forming ten-
dency play an important role in determining the utility 

of chalcogenide alloys as recording material [19-23]. 
The knowledge of the thermal stability and glass form-

ing tendency in Ge25Se75 – xSbx glasses is, therefore, a 
subject of great interest. 

 

2. EXPERIMENTAL DETAILS 
 

Amorphous glassy alloys of Ge25Se75 – xSbx with x  6, 

9 12 and 15 were prepared by melt quenching technique. 

The highly pure materials (99.999 % pure) were weighed 

according to their atomic percentages and sealed in 

quartz ampoules under a vacuum of 10 – 6 Torr using 

turbo pump. The sealed ampoules were then placed in a 

Microprocessor Controlled Programmable Muffle Fur-

nace with rocking mechanism. The temperature of the 

furnace was increases at three stems. Initially at 773 K 

for 4 hours, then 973 K for 4 hours, and finally at 1273 K 

for 6 hours. The rocked motion accomplishes a complete 

mixing of the materials in the ampoule. Rapid quenching 

in ice-water bath was used to obtain the bulk amorphous 

material. By breaking the ampoule, ingots of the sample 

were taken out and then using ceramic tools the amor-

phous material was crushed in to a fine powder.  Thin 

films of Ge25Se75 – xSbx glasses were prepared on Si (100) 

wafer for energy dispersive X-ray spectroscopy (EDAX) 

by using Edward Coating Unit E-306. The surface mor-

phology of as-prepared samples was examined by means 

of JEOL JSM-6360LV, Japan, scanning electron micros-

copy (SEM). A Regaku X-ray diffractometer Ultima IV 

was employed for studying the structure of the material. 

The first order phase transformation in Ge25Se75 – xSbx 

glas-ses were investigated by using Differential Scan-

ning Calorimeter (Model–DSC plus, Rheometric Scien-

tific Company, U.K). The instrument was calibrated with 

indium, lead and tin standards. Each sample was hea-

ted at a constant heating rate of 5, 10, 15 and 20 K/min 

and the changes in heat flow with respect to tempera-

ture were measured. The glass transition temperature 

and the crystallization temperature were determined 

using the microprocessor of thermal analyzer. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Structural Analysis 
 

Fig. 1 shows the energy dispersive X-ray spectros-

copy (EDAX) of Ge25Se63Sb12 thin films deposited on Si 

(100) substrate. The EDAX spectrum shows the peaks 

of Ge, Se, and Sb, thereby, confirming the presence of 

these elements in the samples. Thin films have been 

deposited on silicon wafer substrate and the silicon in 

the EDAX spectra shows very high intensity as com-

pared to Ge, Se and Sb. Therefore, the peaks corre-

sponding to Ge, Se and Sb are not much significant as 

compared to silicon peak, but the presence of all the 

elements have been observed as per our alloy composi-

tion. It is also observed that the composition obtained 

from EDAX analysis is almost same as that of starting 

composition of the as-prepared alloys. 

 
 

Fig. 1 – EDAX of Ge25Se63Sb12 thin films deposited on Si (100) 

wafer 
 

The surface morphology of Ge25Se60Sb15 powder was 

examined by means of JEOL JSM-6360LV, Japan, 

scanning electron microscopy (SEM), shown in Fig. 2, 

which confirms the amorphous state of the samples. 
 

 
 

Fig. 2 – SEM of as-prepared Ge25Se60Sb15 glasses 
 

A Regaku X-ray diffractometer Ultima IV was em-

ployed for studying the structure of the as-prepared and 

crystallized samples (collected from the DSC pans after 

completing the scan). 

Copper target was used as the X-ray source with 

  1.54178  Å (Cu K 1). The scanning angle was in the 

range of 10 -90 . A scan speed of 2 /min and a chart 

speed of 1 cm/min were maintained. The X-ray diffrac-

tion traces of all samples were taken at room tempera-

ture and found to show similar trends and hence only 

one of them is shown in Fig. 3a and b. 

The absence of sharp structural peak confirms the 

amorphous state of the samples while the presence of 

the sharp peaks confirms the crystalline nature of the 

samples. 

 

3.2 Glass Transition (Tg) and Crystallization (Tc) 

Temperature and Enthalpy Released 
 

Fig. 3 represents the DSC thermograms of 

Ge25Se69Sb6 glass recorded at different heating rates 5, 

10, 15 and 20 K/min. (Similar trends has also been ob-

served by other glassy systems bur are not shown here). 

 



 

FIRST ORDER PHASE TRANSFORMATION IN… J. NANO- ELECTRON. PHYS. 5, 02021 (2013) 

 

 

02021-3 

 
 

 
 

Fig. 3 – X-ray pattern of Ge25Se66Sb9 sample (a) and X-ray 

pattern of crystallized Ge25Se60Sb15 sample (b) 

 

Two characteristic phenomena are evident in these 

DSC thermograms: (1) endothermic-like phenomenon 

indicating the glass transition region and (2) an exother-

mic phenomenon that manifest the crystallization process. 

The first order phase transformation in these glasses is 

characterized by measuring the glass transition (Tg) and 

crystallization temperature (Tc) with Sb contents and also 

the heating rates. The values of glass transition (Tg) and 

crystallization temperature (Tc) with Sb contents at the 

heating rate of 20 K/min are given in Table 1. It is clear 

from this table that Tg increases with increasing Sb con-

tents in the Ge-Se system. The increase in Tg could be 

attributed either to the increase in effective molecular 

weight with increasing Sb content or to the increase in 

concentration of long polymeric chains of Ge-Se. 

The Tg of a multi-component glass is known to be de-

pendent on several independent parameters such as 

band gap, co-ordination numbers, bond energy, effective 

molecular weight, the type and fraction of various struc-

tural units formed [24-26]. In our study Tg increases 

with increasing Sb concentration. Theoretically, Tg is 

defined as the temperature at which the relaxation time 

 becomes equal to the relaxation time of observation obs. 

At the same time, Tg varies inversely [27] as the relaxa-

tion time. With increasing Sb concentration, obs decreas-

es and hence the glass transition temperature increases. 

Both (Tc – Tg) and Tc represent the thermal stability 

of the glass. The values of (Tc – Tg) for different compo-

sitions are given in Table 1. It is clear from this table 

that (Tc – Tg) is highest for the composition of 6 % of Sb. 

Hence the glass with 6 % of Sb is most stable glass. 

The crystallization enthalpy Hc was evaluated for 

all composition using the formula 

 
 

Fig. 4 – DSC plot of Ge25Se69Sb6 glasses at different heating 

rates 5, 10, 15 and 20. 
 

 Hc  kA / m, (1) 
 

where k  1.5 is the constant of the instrument, A is the 

area of crystallization peak and m is the mass of sample. 

The enthalpy released is found to be less for 

Ge25Se69Sb6 glass which further confirms its maximum 

stability of this glass. 

 

3.3 Activation Energy of Crystallization ( Ec) 
 

The interpretation of the experimental crystalliza-

tion data is given on the basis of Kissinger’s, Matusita’s 

and modified Ozawa’s equations for non-isothermal 

crystallization. The activation energy ( Ec) for crystalli-

zation can therefore be calculated by using Kissinger’s 

equation [10-11], 
 

 ln (  / Tc
2)  – Ec / RTc + D [4]  

 

The plot of ln (  / Tc
2) versus 1000 / Tc for 

Ge25Se66Sb9 chalcogenide glasses are shown in Fig. 5, 

which come to be straight lines (similar trends has also 

been observed for other glasses and are not shown 

hear). The value of Ec may be calculated from the slope 

of each curve and is given in Table 1. 

The activation energy of crystallization increases with 

increasing Sb content in Ge-Se system, indicating that 

the rate of crystallization is faster as the Sb content 

increases. The increase in activation energy of crystalli-

zation may be interpreted in terms of increased hoping 

conduction in impurity induced states [28]. At higher 

concentration, alloying effect observed which could 

change the mobility gap and various other parameters 

of the original materials. The activation energy of crys-

tallization is an indication of the speed of rate of crys-

tallization. 
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Table 1 – Compositional dependence of crystallization parameters Tc, Tg, (Tc – Tg), crystallization enthalpy ( Hc) and activation 

energy of crystallization ( Ec) of Ge25Se75 – xSbx from non-isothermal DSC experiments at a heating rate of 20 K/min 
 

Sample Tg (K) Tc (K) (Tc – Tg) (K) ( Hc) (J/mg) Ec (kJ/mole) 

Ge25Se69Sb6 323.25 389.19 65.94 1986.38 85.024 

Ge25Se66Sb9 327.34 384.16 56.82 2564.75 92.956 

Ge25Se63Sb12 331.21 379.46 48.25 3248.46 102.426 

Ge25Se60Sb15 336.44 372.13 35.69 4456.24 105.752 
 

 

 
 

Fig. 5 – Plot of ln (  / Tc
2) as a function of 1000 / Tc (K) for 

Ga15Se85 – xAgx glass 

 

4. CONCLUSIONS 
 

Non-isothermal DSC measurements were performed 

to study the first order phase transformation in 

Ge25Se75 – xSbx chalcogenide glasses. It indicates that 

glass transition and crystallization temperatures de-

pend on the heating rate and on Sb concentration. The 

results of crystallization kinetics indicate that the de-

gree of crystallization under non-isothermal conditions 

fits well with the theory of Matusita, Sakka and Kissin-

ger. The temperature difference (Tc – Tg) and Tc is hig-

hest for the samples with 6 % of Sb. Hence, Ge25Se69Sb6 

glass is most stable. The enthalpy released is found to 

be less for Ge25Se69Sb6 glass which further confirms its 

maximum stability. The activation energy of crystalliza-

tion ( Ec) increases with increasing Sb contents in Ge-

Se system, which indicates that the speed of rate of 

crystallization is faster with increasing Sb concentra-

tion in the present system.  
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