Нанокомпозити а-Fe₂O₃ / γ -Fe₂O₃: синтез, кристалічна та магнітна мікроструктури, морфологія

В.О. Коцюбинський*, В.В. Мокляк, А.Б. Груб'як, П.І. Колковський, Аль-Саєді Абдул Халек Заміл

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57,76025 Івано-Франківськ, Україна

(Одержано 02.11.2012; у відредагованій формі – 16.03.2012; опубліковано online 28.03.2013)

У роботі розглядається взаємозв'язок між умовами синтезу нанокомпозиту α-Fe₂O₃ / γ-Fe₂O₃ і фазовим складом, морфологією, а також особливостями кристалічної і магнітної мікроструктур матеріалу.

Ключові слова: γ -Fe₂O₃, α -Fe₂O₃, Суперпарамагнетизм, Месбауерівська спектроскопія.

PACS numbers: 76.60.Jx, 81.07.Bc

1. ВСТУП

Особливе місце серед наносистем займають магнітні наноматеріали, сфера практичного використання яких охоплює пристрої запису інформації, магнітного охолодження, магнітні сенсори. Водночас з'являються нові перспективні напрями їх застосування, зокрема, контрольоване перенесення ліків [1] і генів, сепарація як біологічних об'єктів (віруси, бактерії) [2], так і забруднюючих навколишнє середовище речовин (видалення органічних відходів з води з подальшою їх каталітичною переробкою, де магнітні наночастинки виконують функції адсорбенту, носія і каталізатора) [3]. Перспективним є використання а-Fe₂O₃ як гетерогенного каталізатора [4]. Багатообіцяючими є застосування нанодисперсних оксидів заліза у фотокаталітичних пристроях генерації водню [5]. Широкий спектр потенційних застосувань магнітних наноматеріалів є рушійною силою активного пошуку нових методів їх отримання з контролем фазового складу та морфології частинок. Залежність таких параметрів, як намагніченість і магнітна анізотропія, від розміру й морфології частинок, їх взаємодії з матрицею та ближнім кластерним оточенням дозволяють розробляти методики цілеспрямованої модифікації фізичних властивостей магнітного матеріалу, базовані на змінах технологічних умов синтезу та постобробки.

2. ОДЕРЖАННЯ НАНОДИСПЕРСНИХ ОКСИДІВ ЗАЛІЗА ТА МЕТОДИ ЇХ ДОСЛІДЖЕННЯ

2.1 Методи отримання нанодисперсних оксидів заліза

Класична методика синтезу наночастинок оксидів заліза [6, 7] полягає в осадженні кристалогідратів та гідрооксидів заліза безпосередньо із суміші розчинів хлоридів Fe²⁺ і Fe³⁺ в лужному середовищі з наступним термічним розкладом; морфологія частинок при цьому визначається умовами синтезу та наступної термообробки. Типовою є робота [8], в якій при взаємодії розчинів Fe(NO₃)₃ та NaOH отримувалася суміш α-Fe₂O₃ та α-FeOOH (розміри частинок 40-50 нм). При цьому, як правило, формуються глобулярні частинки розмірами 10-100 нм, хоча пропонуються [9] методи синтезу голкоподібних частинок α -Fe₂O₃ шляхом розкладу β -FeOOH, отриманого швидким гідролізом 0,1 М FeCl₃ розчином 5 × 10⁻³ М HCl. Пропонуються варіанти синтезу наночастинок α -Fe₂O₃ шляхом розчинення FeCl₃-6H₂O в HCl при 100 °C [10]. У роботі [11] відпал отриманого методом осадження γ -FeOOH при 250 °C впродовж 2 год. дозволив отримати ультрадисперсний монофазний γ -Fe₂O₃. Авторами [12] методом хімічної копреципітації розчинів FeCl₂-4H₂O та FeCl₃-6H₂O отримано суперпарамагнітні наночастинки γ -Fe₂O₃ діаметром 3-5 нм.

Розроблено методики темплатного синтезу в мікрокраплях води, стабілізованих у рідинних емульсіях з використанням поверхнево-активних речовин та гідрофобного агента, де реалізується просторовообмежене осадження гідратованих оксидів заліза. Перевагами методу є можливість керування складом і середнім розміром частинок та отримання монодисперсних матеріалів з достатньо вузьким розподілом частинок за розмірами [13]. При цьому розмір частинок може становити 10-70 нм, а їх морфологія контрольовано варіюватися [14]. Відомі методи синтезу наночастинок у-Fe₂O₃ розмірами 5-10 нм шляхом розкладу Fe(CO)5 в діоктиловому ефірі в присутності ПАР, що запобігає агрегатації та преципітації частинок. Температура фазового переходу у-Fe₂O₃ / α-Fe₂O₃ становить 350-400 °С, проте у-форма може бути стабілізована шляхом включення наночастинок в полімерну, скляну чи керамічну матрицю [15]. У ряді робіт пропонуються способи отримання наночастинок у-Fe₂O₃ на поверхні Fe-підкладки під час швидкого окислення в процесі лазерного опромінення. Оксиди Fe на поверхні металевих наночастинок отримують також методом конденсування після хімічного розкладу парів Fe(CO)5 [16]. Авторами [17] нанопорошок у-Fe₂O₃ було синтезовано висушуванням преципітатів у-FeOOH, отриманих у результаті взаємодії розчинів Fe(NO₃)₃, LiOH та Li₂O. Дендрити α-Fe₂O₃ синтезувалися в роботі [18] гідротермальним розкладом К₃[Fe(CN)₆].

2077-6772/2013/5(1)01024(8)

^{*} v_kotsuybynsky@mail.ru

Ж. нано- електрон. ФІЗ. 5, 01024 (2013)

2.2 Синтез нанокомпозиту α-Fe₂O₃/γ-Fe₂O₃

При одержанні α-Fe₂O₃ / γ-Fe₂O₃ водний розчин Fe(NO₃)₃-9H₂O вводили в розчин моногідрату лимонної кислоти зі швидкістю дозування 0,5 мЛ/с. Осаджений гідрат цитрату заліза відділяли від дисперсійного середовища й упродовж семи діб висушували на повітрі при температурі 60 °С. Одержаний аерогель прожарювали при температурах 200, 300, 400 °C впродовж 1 год. При цьому відбувалися реакції леструкції С₆Н₅О₇Fe·3H₂О з утворенням оксидів заліза у вигляді суміші а-Fe₂O₃ та γ -Fe₂O₃, причому виділення вуглекислого газу та водяної пари спричиняло формування пористого матеріалу з розвиненою питомою поверхнею. Встановлювався вплив на фазовий склад та магнітну мікроструктуру отриманих матеріалів мольного співвідношення між $Fe(NO_3)_3 \cdot 9H_2O$ та $C_6H_8O_7 \cdot H_2O$ для чого було синтезовано 4 серії зразків.

2.3 Експериментальні методи

Рентгенографування дослідних зразків проводили з допомогою дифрактометра ДРОН-4-07 у випромінюванні мідного аноду. Фокусування рентгенівських променів здійснювалось за схемою Брега-Брентано.

Месбауерівські дослідження проведено з використанням спектрометра MS-1104Em, ширина лінії металічного α-Fe становила 0,29 мм/с, калібрування ізомерних зсувів відбувалося відносно α-Fe.

Спектри поглинання в інфрачервоному діапазоні 500-4000 см⁻¹ отримували на фур'є-спектрометрі Thermo Nicolet.

Електронно-мікроскопічні дослідження здійснено за допомогою скануючого мікроскопа (прилад JSM-6490 LV JEOL, прискорююча напруга 30 keV).

3. ОТРИМАНІ РЕЗУЛЬТАТИ ТА ЇХ АНАЛІЗ

Виявлено, що матеріали всіх серій є сумішами оксидів α -Fe₂O₃ та γ -Fe₂O₃ (табл. 1, рис. 1). Фазовий

склад матеріалів визначається молярним співвідношенням між прекурсорами при синтезі. На рентгенограмах усіх зразків після відпалу при 200-300 °C зафіксовано гало, яке свідчить про наявність у матеріалі рентгеноаморфної складової. Зразок № 3 після прожарювання при 200 °C залишався рентгеноаморфним, проте після відпалу при 300 °C співвідношення фаз α- та γ-Fe₂O₃ дорівнює 88:12, в той час як для зразка № 2 термообробка при тих же умовах не приводить до суттевої зміни співвідношення вмісту α- та γ-Fe₂O₃. Для всіх досліджуваних систем спостерігається монотонне зростання усереднених за об'ємом розмірів OKP <*D*> для обох фаз при зростанні температури відпалу.

Рис. 1 – Дифрактограми матеріалів серії № 1 після відпалу при температурах 200, 300 та 400 °С

Розміри ОКР для частинок, синтезованих рідкофазним методом при відносно невеликих температурах термообробки, можна вважати близькими до розмірів окремих кластерів наносистеми γ -Fe₂O₃ / α -Fe₂O₃. Розміри частинок α -фази (270–390 Å) для всіх систем приблизно в 3 рази перевищують розміри частинок γ -Fe₂O₃ (65-170 Å).

Таблиця 1 – Φ азовий склад та структурні параметри нанокомпозитів

	Nº cepiï	А : В, моль	Структурні параметри	Температура відпалу, °С					
				200		300		400	
				α -Fe ₂ O ₃	γ -Fe ₂ O ₃	α -Fe ₂ O ₃	γ-Fe ₂ O ₃	α -Fe ₂ O ₃	γ -Fe ₂ O ₃
	1	1:0,5	склад,%	91 ± 3	9 ± 1	96 ± 3	4 ± 1	100	0%
			a, Å	5,033	8,347	5,033	8,347	5,033	
			<i>c</i> , Å	13,748	25,034	13,748	25,035	13,748	
			<d>, Å</d>	270	160	340	-	600	
	2	1:1	склад, %	53 ± 7	47 ± 3	51 ± 7	48 ± 3	93 ± 3	7 ± 1
			a, Å	5,029	8,341	5,031	8,341	5,033	8,344
			<i>c</i> , Å	13,747	25,034	13,752	25,034	13,750	25,033
			<d>, Å</d>	260	60	260	60	320	100
	3	1:4	склад, %			88±2	12 ± 1	100	0
			$a, \mathrm{\AA}$	Рентгеноаморфний		5,034	8,345	5,033	
			<i>c</i> , Å			13,751	25,034	13,750	
			<d>, Å</d>			315	128	350	
	4	1:12	Склад, %	57 ± 5	43 ± 2	83 ± 4	12 ± 1	100	7 ± 1
			<i>a</i> , Å	5,033	8,359	5,034	8,345	5,033	8,344
			<i>c</i> , Å	13,743	25,036	13,751	25,035	13,750	25,0341
			<d> Å</d>	390	140	270	128	350	100

 $A: B = Fe(NO_3)_3 - 9H_2O: C_6H_8O_7 - H_2O$

Нанокомпозити а-Fe2O3 / γ -Fe2O3: синтез, ...

Спектроскопія в ІЧ- діапазоні зафіксувала на поверхні частинок усіх систем сорбовану воду (рис. 2). Смуга поглинання з максимумом в околі 3415-3420 см⁻¹ зумовлена коливними модами валентних зв'язків О-Н гідроксильних груп та молекул води.

Рис. 2 – ІЧ-спектри пропускання матеріалів серій №2, 3 та 4 після відпалу при температурі 300 °С

Ж. нано- електрон. ФІЗ. 5, 01024 (2013)

Максимальна ширина цієї смуги спостерігається для зразка серії №2 з максимальним вмістом у-Fe₂O₃. Характерною для всіх зразків є смуга з максимумом при 2338 см - 1, яку можна приписати коливанням зв'язків в адсорбованому СО2 [19]. Смуга з максимумом при 1634 см⁻¹ є характерною для γ-FeOOH і загалом типовою для деформаційних коливних мод зв'язку О-Н адсорбованої води на поверхні оксидів заліза [20]. У спектрах зразків серій 2 та 4 присутні смуги з максимумами в околі 1024, 549, 472-478 см⁻¹, що також є характерним для γ-FeOOH. Смуга при 1384 см⁻¹ є результатом деформаційних коливань зв'язків СОО-Fe³⁺ [19]. Смуга в околі 535-550 см⁻¹ пов'язана з коливаннями зв'язку О-Fe [15], максимум поглинання на 453 см-1 відповідає коливним модам зв'язків октаедрично-координований Fe³⁺-OH. Смуги при 549, 458 см⁻¹ є характерними для α -Fe₂O₃, при 693, 632 см⁻¹– для γ -Fe₂O₃. Максимальною неоднорідністю за об'ємним та поверхневим складом володіє серія № 2. Для зразків серій № 2 та № 4 відпалених при температурі 300 °С можна вважати доведеною присутність рентгеноаморфної фази γ-FeOOH.

Рис. 3 – Месбауерівські спектри зразків γ-Fe₂O₃ / α-Fe₂O₃ серії №2 після відпалу при температурах 200 (а), 300 (б) та 400 (в) °С; поряд показані функції розподілу величини ефективного магнітного поля на ядрах ⁵⁷Fe, які входять у склад фази γ-Fe₂O₃

Месбауерівські спектри зразків системи №2, отримані при кімнатній температурі (рис. За, б, в), відображають зміни параметрів надобмінної взаємодії в матеріалі при відпалі внаслідок зміни дефектності його структури, впливу поверхневих та розмірних ефектів. Поставити в чітку відповідність окремо виділеній компоненті спектра ядра ⁵⁷Fe в складі фази у-Fe₂O₃ в тетра- чи октакоординації не виявляється можливим. Порушення непрямої обмінної взаємодії внаслідок дефектності структури частинок ү-Fe₂O₃ та, у першу чергу, вплив поверхневих ефектів спричиняє появу магніто-нееквівалентних позицій заліза з меншими значеннями ефективних магнітних полів аж до появи іонів заліза в парамагнітному стані, розширення ліній спектру та їх асиметрію. При апроксимації експериментального спектру було використано методику [21], що дозволило відновити функцію розподілу надтонкого поля на ядрах ⁵⁷Fe в структурі ү-Fe₂O₃ (рис. 3a', б', в'). Виявлено, що розподіл імовірності величин надтонкого поля на ядрах ⁵⁷Fe, що належать магнітовпорядкованій частині фази γ-Fe₂O₃, для зразка серії № 2 після відпалу при 200 та 300 °С, має гладкий характер, який порушується для зразка, відпаленого при 400 °С. Близьке до 0 (- 0,005 ± 0,002 мм/с) значення квадрупольного розщеплення даної складової спектру є підтвердженням її відповідності резонансному поглинанню ядрами ⁵⁷Fe в кубічній фазі дефектної шпінелі γ-Fe₂O₃. Для зразка серії № 2 збільшення температури відпалу веде до зростання величини <Hеф> складової з максимальним ефективним полем; водночас відносний вміст цієї компоненти зменшусться. Порівнюючи дані месбауерівської спектроскопії та рентгенофазового аналізу, можна стверджувати що саме ця частина нанокомпозитної системи буде реєструватися як рентгенокристалічна фаза у-Fe₂O₃ після відпалу при 200 та 300 °С. Дві інші магнітовпорядковані компоненти, очевидно, є результатом резонансного поглинання ядрами ⁵⁷Fe з дефектним кисневим оточенням у приповерхневих областях кластерів; цій частині може бути поставлене у відповідність резонансне поглинання ядрами ⁵⁷Fe, що належать слабко кристалічним частинкам ү-Fe₂O₃ з порушеним магнітним впорядкуванням, оточених рентгеноаморфними суперпарамагнітними наночастинками у-Fe₂O₃. Зростання величини Неф в рентгенокристалічних частинках у-Fe₂O₃ при збільшенні температури відпалу пов'язане з їх укрупненням. Водночас ріст <H_{еф}> є наслідком зростання внутрішніх тисків у нанокомпозиті при спіканні, що спричиняють зменшення довжини зв'язку Fe-O. В цьому випадку зміни Н_{еф} зумовлюються деформаційно індукованим перерозподілом спінової густини електронів s-оболонки іона Fe³⁺. Для всієї групи позицій ⁵⁷Fe в у-Fe₂O₃ зафіксовані значення ізомерних зсувів б, які знаходяться у межах 0,32-0,33 мм/с, що відповідає даним [22]. Зафіксовані значення квадрупольного розщеплення Δ та ізомерного зсуву δ для фази α-Fe₂O₃ є характерними для мікрокристалічного гематиту при температурах, вищих від переходу Моріна [23]; тенденція до звуження резонансної лінії відповідає укрупненню частинок α-Fe₂O₃.

Для наночастинок магнетиків застосовна модель Нееля, згідно з якою, при розмірах кристаліта близько 10 нм, в результаті теплових флуктуацій спостерігаються осциляції магнітного моменту стосовно напрямків осей легкого намагнічування, що приводить до нульової величини середнього значення ефективного поля на ядрі ⁵⁷Fe (суперпарамагнетизм) [24]. Монодоменна частинка буде фіксуватися методом месбауерівської спектроскопії як парамагнітна, якщо час релаксації магнітного моменту τ буде меншим за час життя збудженого стану месбауерівського ядра ⁵⁷Fe τ_p , який дорівнює $1,41 \times 10^{-7}$ с. Час релаксації τ_r розраховується як;

$$\tau_r = \tau_0 \exp\left(\frac{VK}{kT}\right),$$

де τ_0 – незалежний від температури характеристичний час, V– об'єм частинки, K– константа анізотропії. Форма месбауерівського спектра системи залежить від співвідношення між характерними часами τ_r та τ_p . Оскільки значення τ_r залежить від об'єму частинки, то слід очікувати, що при значеннях $\tau_r \leq \tau_p$ в месбауерівському спектрі буде спостерігатися співіснування центрального парамагнітного дублета з надтонкою структурою.

Таким чином, частинки різного об'єму V_i формально володіють різними значеннями точки Нееля T_{NV} , що відрізняються від T_N масивного зразка; чим меншим є V_i , тим нижчою є T_{NV} , але завжди $T_{NV} \leq T_N$. Згідно з даними огляду [13], для сферичної частинки γ -Fe₂O₃ критичний діаметр переходу в монодоменний стан становить 166 нм, проте ці дані явно завищені. В огляді [25] оцінка критичного розміру переходу здійснювалася за формулою:

$$r_c \approx 9 \frac{\left(AK\right)^{0.5}}{\mu_0 M_s^2} \,,$$

де A – константа обмінної взаємодії, $M_{\rm s}$ – намагніченість насичення; для наночастинок γ -Fe₂O₃ r_c за цими даними становить близько 30 нм.

Суперпарамагнітна складова зразків методом месбауерівської спектроскопії фіксувалася у вигляді двох дублетних компонент спектру з близькими значеннями $\delta = 0,34-0,36$ мм/с і різними значеннями квадрупольного розщеплення Δ , яке визначається симетрією ближнього оточення ядра ⁵⁷Fe. Дублетну компоненту месбауерівських спектрів з $\Delta_1 = 0.88$ мм/с можна поставити у відповідність до резонансного поглинання у кластерах ү-Fe₂O₃, які перебувають у напруженому стані внаслідок спікання. Результатом внутрішніх напруг є деформаційні ефекти в ґратці магеміту, порушення кубічної симетрії та виникнення відмінного від нуля градієнта електричного поля на ядрах ⁵⁷Fe. Зафіксовані значення $\Delta_1 = 0.88$ мм/с та $\delta = 0.34$ мм/с свідчать про високоспіновий стан іонів Fe⁺³, поглинання ядрами яких формує дублетну частину спектрів [26]. Невеликий вклад у цю компоненту, ймовірно, робить поглинання у фазі у-FeOOH. Згідно з даними [22], параметри спектру парамагнітного при кімнатній температурі у-FeOOH становлять $\delta = 0.39$ мм/с, $\Delta = 0.54$ мм/с із зростанням Нанокомпозити а-Fe2O3 / γ -Fe2O3: синтез, ...

 Δ при зменшенні розмірів частинок та зниженні температури. Нульове значення квадрупольного розщеплення для другої дублетної складової визначається кубічною симетрією структури частинок, що перебувають у недеформованому стані. Значна ширина цієї компоненти визначається наявністю неперервного розподілу значень ізомерного зсуву навколо середнього значення $\delta = 0,36$ мм/с, що є наслідком існування розкиду значень електронної густини на ядрах ⁵⁷Fe в частинках γ-Fe₂O₃.

Для уточнення фазового складу зразків було застосовано низькотемпературну месбауерівську спектроскопію (рис. 4). Використовуючи результати відновлення функції розподілу $H_{e\phi}$ на ядрах ⁵⁷Fe, магнітовпорядкована частина спектрів апроксимувалася як суперпозиція чотирьох секстетів (один — результат поглинання ядрами ⁵⁷Fe в α -Fe₂O₃, інші три — в γ -Fe₂O₃) та двох дублетних компонент.

Зниження температури, при якій відбувалася фіксація спектру, супроводжувалося лінійним зменшенням інтегральної інтенсивності дублетної компоненти з $\Delta_2 = 0$ мм/с: якщо при кімнатній температурі її відносний вміст становить 23 %, то при температурі 88 К вона перестає фіксуватися.

Рис. 4 – Месбауерівські спектри зразка серії № 2 отриманого відпалом при температурі 300 °С; поряд наведено температури, при яких реєструвалися спектри

Водночас спостерігається нелінійний спад відносного вмісту дублетної складової спектра з $\Delta_1 = 0.88$ мм/с (рис. 4). При 88 К відносна інтегральна інтенсивність цієї компоненти не перевищує 2 %, проте її величина виходить за межі похибки вимірювань. Однозначно встановити фазову приналежність цієї частини матеріалу (парамагнітний γ-FeOOH чи суперпарамагнітні частинки γ-Fe₂O₃ при $\tau_r \leq \tau_p$) в рамках даного дослідження не виявляється можливим.

Рис. 5 – Температурна залежність відносного вмісту дублетних компонент №1 ($\Delta = 0,88$ мм/с) та №2 ($\Delta = 0$ мм/с) в месбауерівських спектрах зразка серії № 2

Константа магнітної анізотропії К для суперпарамагнітних частинок нанодисперсного оксиду у-Fe₂O₃ (розмір частинок 6,5 нм), згідно із [27] становить $1,2 \times 10^6$ Дж/м³; припускається, що величина К визначається взаємодією між частинками. Для нанокластерів у-Fe₂O₃, локалізованих у порах сульфосмоли розміром близько 7 нм, зафіксовано значення $K = 4,4 \times 10^5 \,\text{Дж/м}^3$, що також перевищує величину цього параметра для об'ємного зразка магеміту $K_0 = 4,7 \times 10^3$ Дж/м³ [28]. Близькі значення $K = (2,1 \pm 0,3) \times 10^5 \, \text{Дж/м}^3$ отримано для частинок у-Fe₂O₃ розміром 10 нм, синтезованих методом рідкофазного гідролізу в роботі [29]. У дрібнодисперсних системах звичайно спостерігається розподіл частинок за розмірами; прийнявши експериментальне значення 6,0 нм як мінімальний розмір частинки у-Fe₂O₃, вважаючи, що при температурі реєстрації спектра 88 К відбувається припинення осциляцій магнітного моменту (рис. 4), було розраховано константу магнітної анізотропії. Оскільки існує невизначеність у значеннях τ_0 , які лежать у межах 10^{-9} - 10^{-10} с, то розраховане значення константи магнітної анізотропії знаходиться в межах (1,3-1,9) × 10⁵ Дж/м³, що узгоджується з літературними даними.

Використовуючи отриману величину K та вважаючи, що зафіксовані значення відносного вмісту дублетної компоненти в месбауерівському спектрі пропорційні відносному вмісту частинок γ -Fe₂O₃, часи релаксації для яких при даній температурі менші за τ_p , було зроблено оцінку розподілу частинок за розмірами. Для частинок γ -Fe₂O₃ розмірами 4,5-7 нм відносний вміст частинок з розмірами 4,5-5,4 нм становить 43 %; 5,4-6,0 нм – 24 %; 6,0-7,0 нм – 33 %.

Якісним підтвердженням реальності оцінки розмірів частинок матеріалу є дані ІЧ-спектроскопії, згідно з якими для даного зразка спостерігаються широкі смуги поглинання в околі 450 та 550 см⁻¹, характерні для γ -Fe₂O₃ з хаотично розподіленими катіонними вакансіями; зникнення надструктурного впорядкування цих вакансій відбувається при розмірах окремих частинок γ -Fe₂O₃ близько 5 нм [30].

В.О.Коцюбинський, В.В. Мокляк, А.Б. Груб'як, та ін.

Опис температурної залежності ефективного магнітного поля на ядрах заліза в частинці об'ємом V пропонується в роботі [29]:

$$H(V,T) = H_0(V,T) \left[1 - \frac{kT}{2KV} \right],$$

де $H_0(V, T)$ – ефективне магнітне поле за відсутності флуктуацій магнітного моменту. Згідно з [31] вкладом поверхневої магнітної анізотропії можна знехтувати, тому, припустивши, що в усьому температурному інтервалі К лежить у межах (1,3-1,9) × 10⁵ Дж/м³, з'являється незалежна можливість визначення розміру частинок.

Рис. 6 – Температурні залежності ефективних магнітних полів для парціальних складових месбауерівських спектрів зразка серії № 2 отриманого відпалом при 300 °С

Відповідно до аналізу результатів лінійної апроксимації експериментальних залежностей H(T)(рис. 5), встановлено, що розмір частинок γ -Fe₂O₃ для досліджуваної системи лежить у межах 5,4-7,2 нм (сферичне наближення), що узгоджується з розрахунками, наведеними вище.

Зміна параметрів δ та Δ для фази α -Fe₂O₃ з температурою реєстрації спектру має монотонно спадний характер (рис. 7а), що не узгоджується з даними, наведеними в [28], згідно з якими в близьких за складом нанокомпозитних системах α -Fe₂O₃ / γ -Fe₂O₃ при температурі близько 120 К фіксуються стрибкоподібні магнітні переходи першого роду (для об'ємних зразків α -Fe₂O₃ і γ -Fe₂O₃ температури Нееля становлять 856 і 965 К відповідно).

Перетворення магнітної надтонкої структури месбауерівських спектрів у парамагнітний дублет без зміщення чи уширення ліній повинні супроводжувати стрибкоподібними змінами квадрупольного розщеплення та ізомерного зсуву; відсутність таких стрибків у нашому випадку, ймовірно, визначається порівняно слабшою міжкластерною взаємодією, що встановлює відсутність колективних фазових переходів для всієї системи. Для фази γ-Fe₂O₃ значення Δ лежать у межах $0,00 \pm 0,04$ мм/с для всіх температур реєстрації месбауерівських спектрів. Ізомерний зсув δ всіх трьох компонент складових спектрів для фази у-Fe₂O₃ монотонно спадає із зростанням температури зйомки (рис. 76). Зафіксоване значення δ дублетної складової 2 спектра, отриманого при температурі T = 290 K ($\delta = 0.34 \text{ мм/c}$), типове для наночастинок γ - ${
m Fe}_2{
m O}_3$. Залежність $\delta(T)$ для цієї компоненти характеризується максимумом в околі 150 К (рис. 7в), що визначається температурно-індукованими ефектами реорганізації кристалічної ґратки γ -Fe₂O₃.

Рис. 7 – Температурні залежності ізомерного зсуву та квадрупольного розщеплення складової спектрів, що відповідає поглинанню фазами α-Fe₂O₃ (а) та γ-Fe₂O₃ (б), а також дублетної складової спектрів (в) зразка серії № 2

Викликані цим зміни градієнта електричного поля на ядрах ⁵⁷Fe знаходять відображення в температурній поведінці квадрупольного розщеплення, яке визначається в основному термічно індукованими змінами заселеності валентних оболонок месбауерівського атома.

Електронно-мікроскопічні дослідження виявляють пористу мікроструктуру зразків, що є результатом виділення продуктів розкладу цитрату заліза в процесі старіння-сушіння гелю та наступного відпалу (рис. 8). Виявлено, що ріст температури відпалу збільшує пористість матеріалу збільшення лінійних розмірів пор. Нанокомпозити а-Fe2O3 / γ -Fe2O3: синтез, ...

Рис. 8 – Зображення матеріалів серії №2, отриманих відпалом гелю при температурах 200 та 300 °С

Для серії № 1 зміни в композиції месбауерівських спектрів зразків, отриманих відпалом ксерогелю при різних температурах, узгоджуються з даними рентгеноструктурного аналізу. Порівняно із зразками серії № 2 частинки фази у-Fe₂O₃ після відпалу при 200 °С є сумарний відносний більшими, вміст суперпарамагнітної компоненти спектра не перевищує 15-16 % при збереженні загальних закономірностей та величин характеристичних параметрів. Відпал при 300 °С повністю усуває дублетну частину спектрів при порівняно слабкій зміні розподілу ефективних полів на ядрах ⁵⁷Fe, які належать фазі ү-Fe₂O₃. Відпал при 400 °С ініціює перехід γ -Fe₂O₃ $\rightarrow \alpha$ -Fe₂O₃. Значення квадрупольного розщеплення для компоненти з відносним вмістом 8,6 % є близьким до характерної величини Δ для високотемпературної фази α -Fe₂O₃.

Принциповими відмінностями характеризуються матеріали серії № 3, зразок якої, отриманий відпалом при 200 °С, – рентгеноаморфний (табл. 1). Месбауерівський спектр цього зразка є суперпозицією двох квадрупольних дублетів, причому характер спектрів практично не змінюється для температур зйомки 88 К та 290 К (рис. 9).

Значення квадрупольного розщеплення для домінуючої частини спектра $\Delta = 0,94-0,95$ мм/с відповідають величинам, зафіксованим для наночастинок γ -FeOOH [32]. Величина квадрупольного розщеплення другої компоненти однозначно свідчить про наявність у зразку тетракоординованих йонів Fe²⁺, які, найімовірніше, належать сполуці Fe(OH)₂.

Відпал при 300 °С для зразків серії № 3 приводить до переходу системи γ -FeOOH / Fe(OH)₂ в композит α -Fe₂O₃/ γ -Fe₂O₃, причому переважаючою фазою є гематит.

Ж. нано- електрон. ФІЗ. 5, 01024 (2013)

Рис. 9 – Месбауерівські спектри зразків серії № 3

4. ВИСНОВКИ

Розроблено та апробовано метод рідкофазного синтезу нанокомпозитного матеріалу γ -Fe₂O₃/ α -Fe₂O₃ із застосуванням як вихідних прекурсорів Fe(NO₃)₃-9H₂O та C₆H₈O₇-H₂O з контролем температури висихання колоїдного розчину без допуску автовідпалу матеріалу. Метод характеризується технологічною простотою, низькою вартістю, можливістю контролю фазового складу та розмірів окремих частинок. Фазовий склад і морфологія отримуваних матеріалів залежать від молярних співвідношень прекурсорів при синтезі і наступної термообробки гелю. Перевагами методу є можливість отримання наночастинок оксидів заліза з розмірами < 10 нм.

Отриманий матеріал можна представити як композит, що складається з кластерів α -Fe₂O₃, оточених нанопористими частинками γ -Fe₂O₃. Відповідно до аналізу даних рентгеноструктурного аналізу та месбауерівської спектроскопії розмір частинок γ -Fe₂O₃ для отриманих систем лежить у межах 5-7 нм.

Експериментально розраховано константу магнітної анізотропії для наночастинок γ -Fe₂O₃ – $K = (1, 3-1, 9) \times 10^5 Дж/м^3$. Вважаючи, що зафіксовані значення відносного вмісту дублетної компоненти в месбауерівському спектрі пропорційні відносному вмісту частинок γ -Fe₂O₃, часи релаксації для яких при даній температурі менші за час життя збудженого стану месбауерівського рівня, проведено оцінку розподілу частинок за розмірами.

подяка

Робота виконана в рамках виконання проекту «Синтез, структура та електрохімічні властивості поліфункціональних наноматеріалів на основі оксидів заліза» № 0112U001659 (Міністерство освіти і науки України).

Нанокомпозиты α-Fe₂O₃ / γ-Fe₂O₃: синтез, кристаллическая и магнитная микроструктуры, морфология

В.О. Коцюбинский, В.В. Мокляк, А.Б. Грубяк, П.И. Колковский, Аль-Саеди Абдул Халек Замил

Прикарпатский национальный университет имени Василия Стефаника, ул. Шевченко, 57, 76025 Ивано-Франковск, Украина

В работе рассматривается взаимосвязь между условиями синтеза нанокомпозитов α -Fe₂O₃ / γ -Fe₂O₃ и фазовым составом, морфологией, а также особенностями кристаллической и магнитной микроструктур этих материалов.

Ключевые слова: γ-Fe₂O₃, α-Fe₂O₃, Суперпарамагнетизм, Месбауеровская спектроскопия.

Nanocomposite Materials α-Fe₂O₃ / γ-Fe₂O₃: Synthesis, Crystal and Magnetic Microstructure, Morphology

V.O. Kotsyubynsky, V.V. Mokliak, A.B.Grubiak, P.I. Kolkovsky, Al-Saedi Abdul Halek Zamil

Vasyl Stefanyk Precarpathian National University, 57, Shevchenko Str., 76025 Ivano-Frankivsk, Ukraine

The paper studies the relationship between the synthesis conditions of nanocomposites α -Fe₂O₃ / γ -Fe₂O₃ and the phase composition, morphology, crystal and magnetic microstructures of these materials.

Keywords: γ -Fe₂O₃, α -Fe₂O₃, Superparamagnetic, Mossbauer spectroscopy.

СПИСОК ЛІТЕРАТУРИ

- K. Kluchova, R. Zboril, J. Tucek M. Pecova, L. Zajoncova, I. Safarik, M. Mashlan, I. Markova, D. Jancik, M. Sebela, H. Bartonkova, V. Bellesi, P. Novak, D. Petridis, *Biomaterials* 30, 2855 (2009).
- 2. I. Safarik, M. Safarikova, China Part. 5, 19 (2007).
- L.-S. Zhong, J.-S. Hu, H.-P. Liang, Adv. Mater. 18, 2426 (2006).
- C. Gregor, M. Hermanek, D. Jancik, J. Pechousek, J. Filip, J. Hrbac, R. Zboril, *Eur. J. Inorg. Chem.* 2010, 2343 (2010).
- K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, M. Grätzel, J. Am. Chem. Soc. 132, 7436 (2010).
- J. E. Hamann, J. Restrepo, *Rev. Colomb. Fisica* 37 No 2, 367 (2005).
- M. P. Morales, T. Gonzalez-Carreno, C. J. Serna, J. Mater. Res. 7, 2538 (1992).
- Y. Soo Kang, S. Risbud, J. F. Rabolt, P. Stroeve, *Chem. Mater.* 8, 2209 (1996).
- S. Music, G. P. Santana, G. Smit, V. K. Garg, Croat. Chem. Acta 72, No1, 87 (1999).
- S. Music, S. Krehula, S. Popovic, *Mater. Lett.* 58, 444 (2004).
- T. P. Raming, A. J. A. Winnubst, C. M. van Kats, A. P. Philipse, J. Colloid Interf. Sci. 249, 346 (2002).
- О. С. Петрова, Е. А. Гудилин, А. Е. Чеканова,
 Ю. Д. Трерьяков, М. Фишлер, У. Симон, Конференция молодых ученых, 100 (Киев: Новые материалы и технологии: 2006).
- S.-J. Leea, J.-R. Jeongb, S.-Ch. Shinb J.-Ch. Kimc, J.-D. Kim, J. Magn. Magn. Mater. 282, 147 (2004).
- С. П. Губин, Ю. А. Кошкаров, Г. Б. Хомутов, Г. Ю. Юрков, *Успехи химии* 74 No6, 539 (2005).
- 15. L. Guo, Z. Wu, T. Liu, Sh. Yang, J. Physica E 8, 199 (2000).
- X. Zeng, Z. Wang, Y. Liu, M. Ji, *Appl. Phys. A* 80, 581 (2005).

- S. Komaba, Y. Ota, H. Chigiri, N. Kumagai, www.electrochem.org/dl/ma/206/pdfs/0589.pdf.
- M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, Ch. Hu, Z. L. Wang, *Cheminform* 36 No 41, (2005).
- 19. T.M. El-Akkad, Thermochim. Acta 37, 269 (1980).
- L. Jianping, Q. Longzhen, Q. Baojun, J. Nanotech. 15, 1576 (2004).
- J. Hesse, A. Rübartsch, J. Phys. E: Sci. Instrum. 7, 526 (1974).
- І.Ф. Миронюк, Б.К. Остафійчук, В.Д. Федорів,
 В.І. Мандзюк, В.О. Коцюбинський, Р.В. Ільницький,
 В.В. Мокляк, В.Л. Челядин, *Фізика і хімія твердого тіла* 8 № 1, 109 (2007).
- 23. О. С. Петрова, А.Е. Чеканова, Е. А. Гудилин, Д.Д. Зайцев, Г.П. Муравьева, Ю.В. Максимов, Ю.Д. Третьяков, Международный научный журнал «Альтернативная энергетика и экология». 45 No 1, 70 (2007).
- 24. С. В. Вонсовский, Магнетизм (Москва: Наука: 1971).
- S. Bedanta, W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009).
- 26. Физические основы мессбауэровской спектроскопии: учебное пособие (Ред. П.П. Серегин) (Санкт-Петербург: СПбГПТУ: 2002).
- I.M.D. Coey, D. Khalafalla *Phys.Solid State+* 11 No 1, 229 (1972).
- M. Pernet, P. Strobel, B. Bonnet, P. Bordet, Y. Chabre, *Solid State Ionics* 66, 259 (1993).
- D. Predoi, V. Kuncser, G. Filoti, *Rom. Rep. Phys.* 56 No 3, 373 (2004).
- 30. C. J. Serna, M. P. Morales, Surf. Colloid Sci. 17, 27 (2004).
- K. Gilmore, Y. U. Idzerda, M. T. Klem, M. Allen, T. Douglas, M. Young, *J. Appl. Phys.* 99, 08Q501 (2006).
- В. И. Гольданской, Химические применения мессбауеровской спектроскопии (Москва: Мир, 1970).