
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ
Vol. 4 No 3, 03013(8pp) (2012) Том 4 № 3, 03013(8cc) (2012)

2077-6772/2012/4(3)03013(8) 03013-1 Ó 2012 Sumy State University

Ostwald Ripening of Diffusion-Limited Small-Size Precipitates at Grain Boundaries

A.V. Koropov*

Institute of Applied Physics of the National Academy of Sciences of Ukraine,
58, Petropavlivska Str., 40000 Sumy, Ukraine

(Received 12 July 2012; in final form 30 September 2012; published online 29 October 2012)

The paper describes a theoretical study of the Ostwald ripening of two-dimensional small-size precipi-
tates of a newly formed phase at the grain boundary of finite thickness, taking into account the diffusion of
impurity atoms from the grain interior to the grain boundary. The precipitate growth is believed to be lim-
ited by the impurity-atom diffusion in the grain boundary. The asymptotic time dependences are found for
the average and critical precipitate radius, supersaturation of solid solution of impurity atoms in the grain
boundary, precipitate size distribution function, precipitate density, and for the factor of grain boundary
filling with precipitates. A discussion of the limits of validity of the obtained results is given.

Keywords: Supersaturated Solid Solutions, Diffusion Decomposition, Precipitates, Ostwald Ripening,
Real Crystals, Macrodefects, Grain Boundaries, Grain Boundary Diffusion, Aged Metal Alloys, Reactor
Constructional Materials, Radiation Strength, Diffusion Growth, Vacancy Pores.

PACS numbers: 61.72. – y, 64.70.Kb, 66.30.Jt, 68.35. – p, 81.10.Jt, 81.30.Mh

* ipfmail@ipfcentr.sumy.ua

1. INTRODUCTION

Three stages are distinguished during diffusion de-
composition of supersaturated solid solution which oc-
curs by the fluctuation formation and further growth of
discrete regions (centers) of a new phase (nuclei of a
new phase) [1-9]. On the initial stage of decomposition,
when supersaturation of solid solution by impurity at-
oms is sufficiently high, intensive formation of viable
nuclei of a new phase with sizes larger than the critical
one (supercritical nuclei) takes place. A number of im-
purity atoms in nuclei is still small on the initial stage
in comparison with the amount contained in solid solu-
tion, and supersaturation of solid solution was not able
to be decreased significantly.

On the second stage, a number of impurity atoms in
nuclei is comparable with that contained in solid solu-
tion; here, supersaturation starts decaying. Amount of
nuclei on this stage is weakly changed, and fraction of
a new phase increases, mainly, due to the growth of the
present viable nuclei.

The third, later stage of diffusion decomposition was
discovered by Ostwald in 1900 [10]. On this stage, su-
persaturation becomes very small, and fluctuation for-
mation of new nuclei does not almost occur, since they
have macroscopically large sizes. Increase in the criti-
cal size of a nucleus connected with the decrease in the
solution supersaturation leads to the fact that smaller
centers of a new phase which were formed pass to the
subcritical size region and are dissolved.

Thus, the growth process of larger precipitates due
to the decrease in the size and disappearance of fine
ones plays the determining role. Here, the average size
of a precipitate monotonously increases in time. This
stage  is  usually  called  the  Ostwald  ripening  (OR)  of
precipitates of a new phase. The alternative term “coa-
lescence” is now used rarely. Grounds of sequential and
internally consistent OR theory were laid in the works
[11, 12], where it is considered that precipitate growth
occurs from the self-consistent average density field of

impurity atoms, and one can neglect a direct diffusion
interaction of precipitates located close to each other
(precipitates are located rather far from each other).

It was shown in the works [6, 8, 11, 12] that kine-
tics of macrodefects on the OR stage is defined by the
tendency to the decrease of the total interfacial surface
energy, by the conservation law of a number of impuri-
ty atoms which are contained in both the precipitates of
a new phase and solid solution, as well as by the mech-
anism of impurity-atom transfer acting in the system.
In a perfect (which does not contain defects) crystalline
matrix, the mass transfer velocity is determined either
by diffusion through the volume of matrix-crystal [11],
or by transition kinetics and atomic structure at the
matrix-precipitate interface of a new phase (boundary
kinetics) [12]. In a real crystal (which contains different
defects), kinetics of macrodefects on the OR stage can
be defined by diffusion along dislocation tubes [13-17]
or diffusion along interfaces (grain boundaries) of poly-
crystals [18, 19]. The majority of publications is devoted
to the OR of island structures on the solid body surface
[20-27]. OR of pores filled by gas [28, 29], OR of multi-
component precipitates of a new phase [8, 21], OR of
crystallization centers in kinetics of crystallization of
melts [30], and a number of other questions [3, 4, 31-
35] were considered as well.

The processes of diffusion decomposition play the
important role in material science being one of the rea-
sons of the aging of metal alloys [36-40]. In particular,
decomposition of solid solution in modified austenitic
stainless steels (structural materials for fast-neutron
reactors and future reactors) leads to the formation of
G-phase (M6Ni16Si7) precipitates and h-carbides (M6С)
that considerably decreases the radiation resistance of
steel on further evolution stages of its defect structure
[38-40].

In the present work, we theoretically consider the
OR  of  two-dimensional  precipitates  of  a  new  phase  at
the grain boundary of finite thickness d [41-44] taking
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into account the diffusion fluxes of impurity atoms from
the grain interior to the grain boundary. As well as in
the works [45-51], it is considered that precipitate ra-
dius R is small in comparison with the typical length
scale of the problem LB (R << LB). It is also considered
that precipitate growth is limited by the impurity-atom
diffusion in the grain boundary, and not by the surface
kinetics of incorporation of impurity atoms into precipi-
tates. Note that OR of three-dimensional precipitates of
a new phase at the grain boundary whose shape con-
sists of two spherical segments of the same radius (see
Fig. 4.23 in [19]) was theoretically considered earlier in
[18,  19].  This  work  is  the  natural  continuation  of  the
works [49-51] where diffusion growth and morphologi-
cal stability of the separated (isolated) two-dimensional
precipitate of a new phase at the grain boundary were
considered. As well as in the works [49-51], for defini-
teness, we will talk about solid precipitates of a new
phase, but formulas obtained later can be also applied
for the case of vacancy pores where vacancies play the
role  of  impurity  atoms.  The  last  remark  concerns  the
works [49-51], too.

2. BASIC RELATIONS OF THE KINETICS
OF OR PRECIPITATES AT THE GRAIN
BOUNDARY

As it is shown in the works [49, 50], the diffusion
growth velocity of two-dimensional precipitate of a new
phase with the base radius R = R(t) and the height h
located at the grain boundary has the form

( )
( )

wd
= D1

0

BB
BR

B B

K R LDdR n
dt hL F R L

(1)

(formula (20) in [49]). Here DB is the coefficient of the
grain boundary diffusion, i.e. the volume diffusion coef-
ficient of impurity atoms in the grain boundary (layer
thickness is d); w is the volume per one impurity atom
in precipitate; LB is the typical length scale of the prob-
lem (formula (12) in [49]); Kl(z) is the l-order Macdon-
ald function [52],

( ) ( ) ( )0 0 1
B

B B

DF z K z K z
Lb

º + , (2)

bB is the surface kinetic coefficient which characterizes
the transition rate of impurity atoms from the grain
boundary to the precipitate of a new phase; DnBR is the
thermodynamically equilibrium drop of the impurity
atom density in the grain boundary around precipitate
of the radius R (formula (17) in [49]).

Now we will consider only the case of small super-
saturations of solid solution of impurity atoms in the
grain boundary

( ) ( ) 1B B
B

B

n t n
t

n
¥

¥

-
D º << . (3)

Here ( )Bn t  is the impurity atom density in the grain
boundary far from precipitate of a new phase; nB¥ is the
thermodynamically equilibrium value of the impurity
atom density in the grain boundary near plane surface

grain boundary/precipitate of a new phase (R ®¥).
For precipitate of small radius (R << LB) in the case

of small supersaturations (3) formula (1) takes the form

( )0

1 1B B B

B B

dR D n
dt h K R D RR

wd
b

¥
*

G æ ö= -ç ÷+ è ø
(4)

(formula (30) of the work [49]). Here B B KTs wG º ; sB

is the specific interfacial energy of the grain boundary/
precipitate of a new phase surface; K is the Boltzmann
constant; T is the temperature;

( )0 0 BK K R Lº ; (5)

R* is the critical radius of precipitate of a new phase
(precipitate with the radius R > R* increases, and with
the radius R < R* decreases in size). We note that in
the case of R << LB

( ) ( ) ( ) ( )2
0 ln 2 2 ln 2B B B BK R L R L O R L R Lg é ù= - é + ù +ë û ë û ,(6)

where g = 0,5772… is the Euler constant [52], i.e. K0
depends weakly (logarithmically) on the value of R.

If growth of small precipitate (R << LB) is limited by
the impurity-atom diffusion (DB/bB ® 0), then from (4)
we obtain

÷
ø

ö
ç
è
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00

11 wdwd , (7)

since in the case of small supersaturations (3) the follo-
wing formula takes place:

1B
BR*

G
= D << (8)

(the first formula of (29) in the work [49]). Introducing
the designation

0

B BD nD
hK

wd¥º , (9)

expression (7)  for  the  growth rate dR/dt of precipitate
we finally write in the form

B
B

dR D
dt R R

Gæ ö= D -ç ÷
è ø

. (10)

We should note that the value of D has dimensionality
of diffusion coefficient and is the constant under the
condition of neglect of the dependence K0 on R at the
specified statement of the problem.

In this work we will consider an ensemble of precip-
itates of a small size only (R << LB),  whose  growth  is
limited by the impurity-atom diffusion (DB/bB ® 0) in
conditions of small supersaturations of solid solution of
impurity atoms in the grain boundary (DB << 1). In this
case, the growth rate of precipitates has the form of (7)
and (10).

Later we will use the following dimensionless values:
precipitate radius 0 0B BR R Rr *º = D G , time t¢ º t/T0,

where ( )0 0t
R R t* *

=
=  is the initial critical radius of pre-
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cipitate, ( )
=

D º D0 0B B t
t  is the initial supersaturation of

impurity atoms in the grain boundary, 3
0 0 BR D*T º G  is

the typical time of the problem. Then, omitting the
stroke at t¢, equation (10) takes the form

( )
2 1d

dt x t
r r

r = - , (11)

where

( ) ( ) ( )0 0B Bx t R t R t* *º = D D (12)

is the dimensionless critical radius of precipitate (the
value we are looking for), x(0) = 1.

Let ¦(r, t) is the distribution function of precipitates
of a new phase by sizes normalized on the precipitate
density (a number of precipitates per unit area of the
grain boundary), i.e. in such a way that

( ) ( )
0

,N t f t dr r
¥

= ò (13)

is the precipitate density; and ¦(r, t) and N(t) should be
determined. Distribution function ¦(r, t) satisfies the
kinetic equation (continuity equation in the size space)
[11, 12]

( ) ( ) 0,,
=úû

ù
êë

é
¶
¶

+
¶

¶
dt
dtf

t
tf r

r
r

r (14)

with the specified initial distribution function f0(r) º
º f(r,t)|t = 0 and  matter  balance  equation  in  the  system
(the law of conservation of matter)

( )

( ) ( ) ( )

2 2
0 0 0 0

0

2 2
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, ,

B V

B V

hn n d R f d

hn t n t d R f t d
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w

¥
*

¥
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ò

ò
 (15)

where ( )0 0B B t
n n t

=
º , ( )Vn t  is the impurity atom density

in the grain interior, ( )0 0V V t
n n t

=
º , d is the typical lat-

eral dimension of the grain.
We note that impurity atoms contained, respectively,

in solid solutions of the grain boundary, grain body, and
in precipitates of a new phase are taken into account in
the law of conservation of matter (15). As well as in the
works [49, 50], we will consider that thermodynamic
equilibrium between impurity atoms contained in the
grain body near grain boundary and impurity atoms in
the grain boundary itself exists far from precipitate of a
new phase. Then

V Bn Cn= , 0 0V Bn Cn= (16)

(formula (10) in [49]). Taking into account correlations
(16), we write the law of conservation of matter (15) in
the form

( ) ( ) ( )2 2
0 0

0 0
,B BQ f d t f t dk r r r k r r r

¥ ¥
* *º D + = D +ò ò ,(17)

where

( )
2
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p
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w d

*
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or in the form

( ) ( )2
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, 1B t

f t d
Q
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Here

( )
2

0

B

hR
Q n Q Cd
k p

k
w d

* *

¥

º =
+

(20)

is the constant which characterizes the given system.
Taking into consideration formula (12), we have

( ) ( )20

0
, 1B f t d

Qx t
k r r r
¥D

+ =ò . (21)

Thus,  the  problem  is  to  discover  an  asymptotic  (at
t ® ¥) solution of equations (11), (14), and (21) for the
specified initial condition f(r,t)|t = 0 = f0(r).

3. ASYMPTOTICS OF CHANGE OF THE
PRECIPITATE CRITICAL RADIUS AND
SUPERSATURATION OF SOLID SOLUTION
OF IMPURITY ATOMS IN THE GRAIN
BOUNDARY ON THE OR STAGE

In order to solve the stated problem, firstly, we will
find the asymptotic (at t ®¥) of change in the dimen-
sionless precipitate critical radius ( ) ( ) 0x t R t R* *=  toge-
ther with the asymptotic of change in the supersatura-
tion of solid solution of impurity atoms in the grain
boundary DB(t) = DB0/x(t) (see formula (12)).

Based on the works [8, 11], as independent variable
in equations (11), (14), and (21), we will choose the rel-
ative radius (with respect to the critical one), but not
the dimensionless precipitate radius r

( )
( ) ( )B

B

R Ru t
x tR t
r

*º = D =
G

. (22)

Since supersaturation DB(t) ® 0 at t ®¥, then
x(t) ® ¥; due to this fact, x(t) can be used for the time
reading [8, 11]. As the variable which plays the role of
time t, it is convenient to choose the value

( )
( )

2 2
2 0

0
ln ln ln B

B

R t
x

tR
t

*

*

æ ö æ öD
º = =ç ÷ ç ÷ç ÷ç ÷ Dè øè ø

, (23)

( )2 expx t t= . (24)

Then, in variables u, t , equation (11) takes the form

( )2 31 1
2

duu u u
d

g
t

é ù= - -ë û , (25)

where

( ) 2 3
3 0dt dt

x dx dx
g g t= º = > . (26)
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Denoting the solution of equation (25) as u(w, t) at
the specified initial condition u|t = 0 = w and taking into
account that r(w, t) = x(t)u(w, t) (see (22)), t|t = 0 = 0,
x|t = 0 = 1, then total number of impurity atoms in pre-
cipitates of all sizes per unit area of the grain boundary

( ) ( )2 2
0

0
,i

hN t R f t dp
r r r

w

¥
*= ò (27)

can be written through the initial distribution function
f0(w) in the form

( ) ( ) ( ) ( )
( )0

2 2 2
0 0,i

w

hN t R x u w f w dw
t

p
t t

w

¥
*= ò . (28)

Here w0(t) is the solution of equation u[w0(t), t] = 0, i.e.
the lower boundary of primary radiuses of precipitates
which were not dissolved till time t.

Taking into consideration formula (27), we write the
law of conservation of matter (21) in the form

( ) ( )0
2

0
1B

iN
Qx t hR

kw
t

p *

D
+ = (29)

or, finally, with taking into account formulas (24) and (28)

( ) ( ) ( ) ( )
( )0

20
01 exp 2 exp ,B

w
u w f w dw

Q t
t k t t

¥D
- - = ò . (30)

g(t) = dt/x2dx is an unknown function in equations
(25) and (30) and they should be used in order to define
it, i.e. eventually for the determination of the critical
radius of precipitate x (t) and supersaturation DB(t).

Analysis of equations (25) and (30), which is similar
to the analysis performed in the works [8, 11], indicates
that at sufficiently large values of time t

( ) ( )2
0 1g t g e té ù= -ë û , (31)

where g0 = const, e(t) > 0, e(t) ® 0 at t ® ¥. The value
of g0 is defined by the condition of touch by the velocity-
time curve du3/dt = 3u2du/dt as  a  function  of u of  the
abscissa axis

( ) 31 0u ug - - = , (32)

( ) 31 0u u
u

g¶ é ù- - =ë û¶
(33)

(see equation (25)). From equations (32) and (33) we find
g0 = 27/4, abscissa of the touch point (“locking” point for
points moving from the right to the left along the u-axis)
u0 = 3/2. As seen from formula (31), points approaching
from the right to u0 pass slower through the “locking”
point u0 = 3/2. The velocity of this passage is determined
by the value of e(t), which, as well as the value of g(t),
should be obtained from equation (30) and equation of
motion (25)

( ) ( )( )
2

2 21 3 273 1
2 2 8

duu u u u
d

e t
t

æ ö= - - + - -ç ÷è ø
. (34)

In the vicinity of the point u0 = 3/2, i.e. at ½u – u0½ £ e(t)
the rate du/dt  is the following:

( )
2

23 3
2 4

du u
dt

e tæ ö= - - -ç ÷è ø
. (35)

Introducing new variable z º (u – 3/2)/e as  ratio  of
two small values, we write equation (35) as follows

( )2 11 3
4

ddz z z
d d

e
e t t

= - - + . (36)

Let us designate

( ) ( )
2

1 1 0
d d

d d
e ea a t
t te

= º = - > . (37)

Then equation (36) takes the form

( )21 3
4

dz z z
d

a t
e t

= - - + . (38)

Similarly to the behavior of g = g(t), asymptotically
(at t ® ¥) a(t) ® a0, where a0 = const. As well as in the
case of the determination of the value of g0, the value of
a0 is defined by the condition of touch by the velocity-
time curve dz/dt as a function of z of the abscissa axis

2 3 0
4

z za- - + = , (39)

2 3 0
4

z z
z

a
¶ æ ö- - + =ç ÷¶ è ø

. (40)

From equations (39), (40) we find a0 = 31/2, abscissa
of the touch point (“locking” point for points moving from
the right to the left along the z-axis) z0 = 31/2/2. Then,
asymptotically (at t ® ¥)

( ) 1 21
3

d
d
e
t

® , ( )2
2

1
3

e t
t

® . (41)

In this case

( )

21 2
1 2 33

ln 2
dz z

d t
æ ö

® - -ç ÷
è ø

, (42)

i.e. velocity dz/d(lnt) asymptotically tends to zero in the
“locking” point z0 = 31/2/2.

Thus, at sufficiently large t corrected value of g(t)
will be the following:

( ) ( )2
0 1 1 3g t g t= - , (43)

and corrected position of “locking” point on the u-axis

( ) ( )0 03 2 3 2 1 2u zt e t t= + = + . (44)

From equations (26) and (43) we obtain

( ) ( )2
03

3 1 1 3dt
dx

g t g t= = - , (45)

where t = lnx2 (formula (23)) and, correspondingly,

( )
( )

3
2

4 31
9 4 ln

x t t
t

é ù
ê ú= +
ê úë û

. (46)
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Returning to the dimensional variables (critical ra-
dius of precipitate R*(t) and time t), from formula (46)
we find

( )
3

23
0

4 31
9 4 ln

B

B

R Dt
Dt R

*

*

ì ü
ï ï= G +í ý

é ùï ïGë ûî þ

. (47)

It is seen from formulas (45) and (47) that basic appro-
ximation g(t) = g0 and, correspondingly, formula

3

0

4 4
9 9

B B B
B

D nR Dt t
hK

wd* ¥G
= G = (48)

are true under the condition 1/3t2 << 1, i.e.

( ) 23
0ln 1BDt R*é ùG >>ë û . (49)

Supersaturation of solid solution of impurity atoms
in the grain boundary asymptotically (at t ®¥)  is  the
following:

( )
1 32 3 2

1 303
2

B
B

B B

hKt t
D n wd

-

¥

æ öGæ öD = ç ÷ç ÷
è ø è ø

. (50)

We note that explicit dependence t = t(t) appears
from formulas (23) і (48)

( )
1 32 3

0 0

2 12ln
3

B B BD nt t
hK R

wd
t ¥

*

é ùæ öGæ öê ú= ç ÷ç ÷ê úè ø è øë û
. (51)

Outside the “locking” point u0 = 3/2 in equation (25)
one can state g = g0 = 27/4 and then

( )
t
=

du V u
d

, (52)

where

( )
2

2
3 3
2 2

uV u u
u
+æ öº - -ç ÷è ø

. (53)

4. ASYMPTOTICS OF THE DISTRIBUTION
FUNCTION OF PRECIPITATES OF A NEW
PHASE AND PRECIPITATE DENSITY ON
THE OR STAGE

We will search the distribution function of precipi-
tates of a new phase by sizes in variables u, t. In these
variables distribution function j(u, t) is connected with
function ¦(r, t) by the correlation

( ) ( ) ( ), , ,j t r r r= =u du f t d xf t du , (54)

whence it follows that

( )
( )

,j t
t

=
u

f
x

. (55)

Kinetic equation for the distribution function j(u, t)
outside the point u0 = 3/2 at t ® ¥ takes the form

( ) ( ) ( ),
, 0

j t
j t

t
¶ ¶

+ é ù =ë û¶ ¶
u

u V u
u

, (56)

where function V(u) is represented by formula (53).
Asymptotics of the distribution function j(u, t) (at

t ® ¥) are the following

( )
( )( )

( )
,

,

0,

f t t
j t

ì -
ï

= -í
ï
î

u
u V u 0

0

,
,

u u
u u
<

³
(57)

where ( ) ( )0

u duu
V u

t
¢

º
¢ò ,

( ) ( )
18 10 3 3ln 3 ln

9 9 2 2
u u u u Bt

-
æ ö æ ö= - + - - - - +ç ÷ ç ÷è ø è ø

, (58)

B º 2ln(3e1/3/25/9), t(0) = 0, t(u0 – 0) = –¥, and f is  an
arbitrary differentiable function which should be deter-
mined.

Distribution function on the right from the point u0
at t ® ¥ is determined by points which come here from
the infinitely distant region and such that correspond to
precipitates on a “tail” of their initial (at t = 0) distribu-
tion. Since a number of precipitates in this distribution
rapidly (in fact, exponentially) decays with the growth
of their sizes, then distribution function in the range of
u > u0 (outside the vicinity of the point u0) tends to zero
at t ® ¥.

To determine the function f,  we will use the low of
conservation of matter (30) which we write in the form

( ) ( ) ( ) 20

0
1 exp 2 exp ,t k t j t

¥D
- - = òB u u du

Q
. (59)

Since at t ® ¥ exp(– t/2) ® 0 and function j(u, t)
has the form of (57), we obtain the following asymptotic
equation for f:

( ) ( )( ) ( )
0 2

0
1 exp

u uu du
V u

k t f t t
é ù

= - ê ú
-ê úë û

ò . (60)

Expression in the right side of equality (60) can be
independent of t only if function f has the form

( )( ) ( )( )expu A uf t t t t- = - + . (61)

Then, at u < u0 ( ) ( ) ( )( )1
, expj t t t

-
= - é ù - +ë ûu A V u u ,

( ) ( )
( ) ( )

( ) ( )

2 11 3

17 9 28 91 9

3 exp 3 2
, exp

2 3 3 2
j t t

-é ù- -ë û= -
+ -

e u u
u A

u u
. (62)

Hence, it is seen that asymptotic (at t ® ¥) behavior of
the distribution function of precipitates of a new phase
by sizes does not depend on the form of the initial dist-
ribution function.

We write function j(u, t) for  the  whole  range  of u
variation (0 £ u < ¥) as follows

( ) ( ) ( ), expj t t= -u A P u , (63)

where P(u) º – exp[t(u)]/V(u), u < u0,
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( )
( ) ( )

( ) ( )

2 11 3

17 9 28 91 9

3 exp 3 2

2 3 3 2

e u u
P u

u u

-é ù- -ë û=
+ -

, 0 3 2u£ < , (64)

( ) 0P u = , 3 2 u£ < ¥ . (65)

Function P(u) is normalized by 1

( ) ( ) ( )
0 0

0 0 0 0
exp exp 1

u u u u

u

du duP u du d
V u V u

t t
= -¥

=

é ù¢
= - = - =ê ú¢ê úë û

ò ò ò ò .(66)

Thus, P(u)du is the probability that precipitate size be-
longs to the range from u to u + du. Graph of function
P(u) is illustrated in Fig. 1 (curve 3).

Fig. 1 - Some functions P(u) obtained in the framework of the
OR theory: 1 – work [11]; 2 – work [22]; 3 – the given work

Constant A in formulas (61)-(63) is determined by
back substitution of expression (61) into equation (60).
Taking into account formula (64), we obtain

( ) 1
2A uk

-
= , (67)

where

( )
02 2

0
1,1824

u
u u P u du= »ò . (68)

Now we express the probability density P(u) (formu-
las (64) and (65)) in other relative variables

0 2 3v u u uº = . (69)

Then

( ) ( )1=P u du P v dv , ( ) ( )1
3
2

P v P u= . (70)

From formulas (64), (65), (69), and (70) for P1( v ) we
obtain the following analytical expression:

( )
( ) ( )( )

( ) ( )

2 11 3

1 17 9 28 91 9

2 exp 2 3 1

2 2 1

e v v
P v

v v

-é ù- -ë û=
+ -

, 0 1v£ < , (71)

( )1 0P v = , 1 v£ < ¥ . (72)

According to (13), (63), and (66), density of precipi-
tates of a new phase will be equal to

( ) ( ) ( )
0

0 0
, , expr r j t t

¥
= = = -ò ò

u
N f t d u du A . (73)

Then, as it follows from formulas (63) and (73)

( ) ( ) ( ),j t t=u N P u . (74)

Taking into account formulas (23) and (48), from (73)
we obtain

( )
( )

2 2 34 3
20

0
0

3
2

B B BR D nN t A AR t
hKR t

wd
-*

* ¥
*

æ ö æ öGæ ö= =ç ÷ ç ÷ç ÷ç ÷ è ø è øè ø
. (75)

In expression (75), as it appears from (20), (67), and

( )2
2 0

0 2 2
Bn Q CdRAR

u hu

w d

k p

*
¥* +

= = , (76)

i.e. asymptotically (at t ®¥) N(t) does not depend on
the value of 0R* .

Since u R R*= , the average radius of precipitate
asymptotically increases with time proportional to the
critical radius

( ) ( )R t uR t*= , (77)

where

( )
0

0
1,0665

u
u uP u du= »ò . (78)

In order to write the asymptotic expression of the
distribution function of precipitates by sizes in varia-
bles R, t, we firstly note

( ) ( ) ( ), , ,j t j t *= =
dRf R t dR u du u
R

, (79)

¦(R, t) = j(u, t)/R*. Taking into account expression for
j(u, t) according to (74), we obtain

( ) ( )
( ) ( )

( )
( ) ( )

,
N t uN tR uRf R t P P

R t R tR t R t* *

æ ö æ ö
= =ç ÷ ç ÷ç ÷ç ÷ è øè ø

. (80)

5. ASYMPTOTICS OF THE FACTOR OF GRAIN
BOUNDARY FILLING WITH PRECIPITATES
OF A NEW PHASE ON THE OR STAGE AND
LIMITS OF VALIDITY OF THE PERFORMED
INVESTIGATION

By analogy with publications [23-25], we introduce
the factor of grain boundary filling with precipitates of
a new phase Z(t)  as  the  area which is  covered by pre-
cipitates on the unit area of the grain boundary

( ) ( ) ( )2 2 2
0

0 0
, ,Z t R f R t dR R f t dp p r r r

¥ ¥
*º =ò ò . (81)

Taking into account correlations (68), (74), and (79),
we write formula (81) at t ® ¥ in the form
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( ) ( ) ( ) ( ) ( )
02 22 2

0
,p j p* *é ù é ù= =ë û ë ûò

u
Z t R t u u t du R t N t u .(82)

Since ( ) ( )
2

0N t A R R t* *é ù= ë û  (see formula (75)), we obtain

that 2 2
0Z AR u constp *= = . Taking into consideration (76),

finally we have

( )Bn Q Cd
Z

h
w d¥ +

= . (83)

We will later show that the same asymptotic result
(83) follows from the law of conservation of matter (17).
Indeed, formulas (17), (18), and (27) give

( ) ( ) ( )
( )

0
0

ii
B B

B B

N tNQ t
n Cd n Cdd d¥ ¥

= D + = D +
+ +

, (84)

where ( )0 0i i t
N N t

=
º . Then, comparison of formulas (27)

and (81) establishes a simple connection between Ni(t)
and Z(t):

( ) ( )i
hN t Z t
w

= . (85)

Taking into account (85), the law of conservation of
matter (84) can be written in the form

( ) ( ) ( )
( )

0
0B B

B B

hZ thZQ t
n Cd n Cdw d w d¥ ¥

= D + = D +
+ +

, (86)

where 0 0( ) tZ Z t
=

º . At t ®¥ DB(t) ® 0. Then, at t ®¥

from relation (86) we have

( )
( )B

hZ t
Q

n Cdw d¥

=
+

, (87)

whence, naturally, formula (83) follows.
Thus,  from  the  law  of  conservation  of  matter  (17)

we have find the same asymptotic expression for Z(t) as
at direct calculation of the factor of grain boundary
filling with the obtained distribution function j(u, t)
(formula (82)).

The total number of impurity atoms in precipitates
of all sizes per unit area of the grain boundary at t ®¥
according to formulas (83) and (85) is equal to

( )i BN n Q Cdd¥= + (88)

that also follows from the law of conservation of matter
in the form of (84).

Finally, we dwell on the question of the application
limits of the obtained formulas. As the previous analy-
sis shows (see formulas (23), (43)), the presented asym-
ptotic expressions are true under the condition

( ) ( )
2

22 2

0
3 3 ln 12 ln 1

R t
x

R
t

*

*

æ ö
= = >>ç ÷ç ÷è ø

. (89)

We consider that this condition is fulfilled at

( )
2

0
12 ln 10

R t
R

*

*

æ ö
³ç ÷ç ÷è ø

, ( ) 1 2

0

5ln
6

R t
R

*

*
æ ö³ ç ÷
è ø

, (90)

i.e. at ( ) 0 2,4915R t R* * ³ , ( ) 0 2,6572R t R* ³  ( ( )R t , R*(t)
are connected by formulas (77) and (78)). We note that
choice of the initial moment of time t = 0 is determined
by the diffusion relaxation of R  to R* ( ( ) ( )0 ~ 0R R* ) in
the obtained inequalities.

We should also note that consideration of the prob-
lem performed in the approximation of self-consistent
average field [8, 11], when diffusion fields of separate
precipitates almost do not overlap, and we can neglect
their direct diffusion interaction (the average distance
between precipitates is ( )ln BR L RL >> ).

6. CONCLUSIONS

Thus, we have theoretically considered the OR pro-
cess of two-dimensional (plane) small-size precipitates
(R << LB) of a new phase located in the grain boundary
of finite thickness d taking into account diffusion fluxes
of impurity atoms from the grain interior of typical size
d (d >> R, d >> d) to the grain boundary. It is assumed
that growth of precipitates is limited by the impurity-
atom diffusion (DB/bB << RK0(R/LB)) in the grain boun-
dary; in this case, growth rate of separate precipitate
takes form of (7), (10). As well as in the works [8, 11], it
is considered that precipitate growth occurs from self-
consistent average field of impurity atoms, and direct
diffusion interaction of precipitates on short distances
from each other can be neglected.

Asymptotic (at t ® ¥) time dependences of the pre-
cipitate critical radius R*(t) (formulas (46)-(48)), super-
saturation of solid solution of impurity atoms in the
grain boundary DB(t) (formula (50)), precipitate density
N(t) (formulas (75), (76)), distribution function of preci-
pitates by sizes ¦(R, t) (formulas (64), (65), (80)), factor
of grain boundary filling with precipitates Z (formula
(83)), total number of impurity atoms in precipitates per
unit area of the grain boundary Ni (formula (88)) are
obtained. It is shown that asymptotically average radi-
us of precipitate increases proportionally to the critical
radius ( ) ( )1,0665R t R t*= ´  (formulas (77) and (78)), and
asymptotic behavior of the distribution function of pre-
cipitates of a new phase by sizes does not depend on the
form of the initial distribution function.

Limits of application of the performed investigation
are discussed (see inequalities (89) and (90) and the
corresponding narration in Section 5).
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