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On the basis of a stochastic system of equations, describing the behavior of the average velocity of na-
noparticles, the external field and the internal energy, a synergetic model, which allows in a self-consistent
manner to present the modes of the suspended nanoparticles motion, was constructed. Considering the
correlation between the times of change of the degrees of freedom the Fokker-Planck equation was ob-
tained, and the corresponding Langevin equation was found. Phase diagram of the system was built and
the dependence of steady-state average velocity on the external conditions was found. Within the frame-
work of the phase-plane method the kinetics of the transition between the modes of the nanoparticles mo-
tion was investigated.
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1. INTRODUCTION

Control and governing of nanoparticles motion are
of a great interest in connection with the development
of nanotechnologies. Solution of such a problem can be
applied to a wide range of technological problems inclu-
ding nano- and microfluidic problems [1], to the aspects
of creation of the newest sensors [2], as well as to the
development of nanomotors and reactor devices [3-8].
Delivery of particles to a certain place where they are
necessary, for example, for targeted drug delivery or in
industrial reactors is the main factor in this case.

It is known that for some existing reactors they use
catalytic particles whose size is determined by accepta-
ble technical conditions when flux of reactants passes
through a catalyst layer [9]. In this case, high activity
necessary for catalysts is achieved due to the increase
in the surface area of active phase (from 25 to 500 m2

on 1 ml) that becomes possible only for very small cata-
lytic particles (of the order of 50 nm) [10].

As a result, the control problem of motion modes of
active nanoparticles is a promising one at present [11-
16]. Usage of different radiation [11, 12] is the simplest
mechanism here. For example, suspended particles which
are present in sufficiently dense liquid flux can be con-
trolled by time-dependent radiation. Moreover, analyz-
ing the concentration distribution of suspended parti-
cles, one can judge the intensity of incident radiation,
and as a result, formation of a new class of liquid-based
radiation sensors is possible.

Since the matter is suspended particles, it is rea-
sonable to address the description of Brownian motion
[11, 12, 17]. In spite of the fact that theory of such mo-
tion was studied by A. Einstein in the beginning of the
last century, some observed effects are explained only
now based on the investigation of the so-called “hot”
Brownian motion [11-13]. It differs from the usual Brow-
nian motion by the fact that nanoparticles (gold nano-
particles  were  used in  the  works [11,  12])  heated by a
focused laser radiation have the external energy stor-
age which later is transformed into mechanical energy.

As a result, nanoparticle motion is conditioned not only
by spontaneous impacts of molecules of surrounded li-
quid, but also by the transformation of existing external
energy storage into motion energy.

Obviously that the above described systems are open
and far from the thermodynamic equilibrium, therefore,
they can support own order only in the case when the
processes which define their behavior are non-linear.

As a result, the aim of the present work is the mod-
eling of motion modes of suspended nanoparticles with-
in the framework of the “hot” Brownian motion model
[11, 12, 17].

2. SYNERGETIC SYSTEM OF EQUATIONS

According to the work [17], the base of such descrip-
tion is the synergetic system of equations determining
self-consistent behavior of three degrees of freedom:
· the order parameter which is reduced to the average

velocity of nanoparticles motion v;
· the conjugate field which represents the strength of

the external field h (in the case of the chemotaxis
phenomenon [15], when nanoparticles move directly
according to the concentration distribution of chem-
ical reactants, the given parameter corresponds to the
concentration gradient of the corresponding chemi-
cal substances);

· the control parameter which can be associated with
the internal energy e of particles.
As a result, the problem is reduced to the expres-

sion of the rates of the mentioned degrees of freedom
through their values u, h, and e. Since only one prefer-
ential direction exists for rectilinear motion of nano-
particles, then it is appropriate to analyze later the
one-dimensional case. Moreover, it is known from the
works [11, 12, 17-19] that several motion modes are
typical for the collective motion of nanoparticles: the
directed motion with certain velocity, rotary motion,
and alternation of the stated motion modes.

In contrast to the work [17], we are interested in
the case of hard self-organization mode when velocity

mailto:yushchenko@phe.sumdu.edu.ua


O.V. YUSHCHENKO, A.YU. BADALYAN J. NANO- ELECTRON. PHYS. 4, 03009 (2012)

03009-2

of nanoparticles motion is changed not smoothly, but
stepwise. To this end, we take into account the simplest
approximation [20] for the time of change of the order
parameter which depends on the velocity value v.

As a result, expression for the average acceleration
is written in the form

h

hæ ö
= - + +ç ÷ç ÷+è ø
&

1 v
v

v
v a h

t v v2 2
1 . (1)

Here tv is the typical time of change of the average ve-
locity of nanoparticles; h is  the  dispersion  constant  of
the average velocity relaxation time; vh is  the  disper-
sion scale; av > 0 is the positive constant of linear reac-
tion of acceleration &v   on the increase in the field h.

Equation for the conjugate field is taken in stand-
ard form

e= - +&
h

h

hh a
t

v , (2)

where the first term has relaxation nature with typical
time th; the second one represents positive feedback of
the average velocity of motion and internal energy with
the rate of the field (ah > 0 is the positive coupling con-
stant). Exactly the latter conditions the increase in the
field which is the reason of self-organization.

The evolution equation of the internal energy

( ) ( )a v t
t e
e

e e
e z

-
= - +& he (3)

differs from equations (1)-(2) by the fact that relaxation
of the parameter e occurs not to zero but to finite value
ee which is specified by the external conditions, for ex-
ample, by the temperature of liquid in which suspended
nanoparticles are placed (te is the corresponding relaxa-
tion time, constant ae > 0). Also, in accordance with the
Le Chatelier principle, the negative feedback of the
external field and velocity of nanoparticles motion with
the rate of the internal energy is taken into account in
equation (3). Moreover, considering the random influ-
ence of environment, stochastic source representing the
Ornstein-Uhlenbeck process is added to equation (3)

( ) ( ) ( )z z z
t t

¢æ ö-
¢= = -ç ÷ç ÷

è ø
, ,

t tI
t t t0 exp . (4)

Here I specifies the intensity of fluctuations and t – the
time of their relaxation.

According to [20], system of synergetic equations (1)-
(3) represents the simplest field scheme describing the
self-organization effect. For the analysis of this system,
it is convenient to use dimensionless variables, namely,
the reduced time t, average velocity v, field h, internal
energy e, and intensity of fluctuations I to the corres-
ponding scales

( ) ( ) ( ) ( )e e e e e

-- - -1 21 2 1 22 2, , , ,v h h v v h h h h v v h h v vt a a t t a t a a t t a t a t t a t a t .

As a result, the behavior of a group of active nano-
particles is represented by the dimensionless system of
equations

h

hæ ö
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, (5)

s e= - +&h h v-1 , (6)
( ) ( )d e e e z= - - +& vh t-1

e , (7)

where correlations -11 ,h v ε vt t t t .s dº º-  are introduced.
In a general case, system (5)-(6) does not have ana-

lytical solution, and therefore, we will use the following
approximation:

e; ?h vt t t , (8)

which shows that internal energy of particles is changed
fastest during system evolution. In this case, s = 1 and
d >> 1. The last condition allows to neglect the left side
of equation (7). As a result, system of three differential
equations is reduced to two ones
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Substituting expressions for h and &h  obtained from
(9) into equation (10), we come to one second-order dif-
ferential equation

( ) ( ) ( ) ( )g z+ = +&& &v v v f v g v t , (11)

which has canonical form of the equation of motion for
non-linear stochastic Van der Pole oscillator [17, 20-23].
In our case, friction coefficient g(v), force f(v), and noise
amplitude g(v) are determined by expressions
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3. STATISTICAL ANALYSIS OF SYNERGETIC
DISTRIBUTION

Now the problem is to find the distribution function
P(v, a, t) of the system in phase space generated by the
velocity v and acceleration a [17, 21, 24].

To this end, we will present the Euler equation (11)
within the framework of the Hamilton formalism

( ) ( ) ( ) ( )
,

.
a

a v a f v g v tg z

=

= - + +

&

&

v
(13)

As a result, necessary probability density P(v, a, t)
is reduced to the distribution function r(v, a, t)  of  the
solutions of system (13)

( ) ( )
z

r=P v,a, t v,a,t . (14)
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Here ...
z

 corresponds to the averaging over noise z.

The continuity equation is written in standard form
[20, 24]

( ) ( ) ( ) ( ) ( )r z r
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where operator
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is introduced. In accordance with expansion method over
van Kampen cumulants [24, 25], expression for the
averaged function r(v, a, t) takes the form of integral-
differential equation
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Then we proceed to the initial distribution P(v, a, t)
replacing operator in the left side of equation (17) by N

)

( ) ( ) ( ) ( )¶ì ü
+ =í ý

¶î þ

) )

, , , , , , ,L v a p v a t N v a t p v a t
t

. (18)

Since we consider the system on large time scales,
then according to [24] equation (11) can be represented
in the form

( ) ( ) ( ) ( )g z+ = +&& &i i i i iv v f v g v tiv (19)

for set of variables v1, v2, …, vn and z1, z2, …, zn, where
summation over repetitive indexes is meant. Analyzing
expression (19), instead of integral-differential operator
N
)

 we obtain the sum
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where moments of correlation function are determined
as follows
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Using representation (4), we obtain correlation for
zero and first moments

( )M t = I0 , ( ) tM t = I1 . (22)

Operators
)

nL  are defined by the rule [17, 21, 24]
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where square brackets denote the commutator [A, B] =
= AB – BA.

Expressions for 0N
)

 and 1N
)

 allow to represent ex-
pression (18) in the form of the Kramers equation [26],
whose solution is the function P(v, a, t).

Since integral

( ) ( )= òap v,t P v,a,t da (24)

is of a greater practical interest than function P(v, a, t)
does, then later we consider the moments of the initial
distribution

( ) ( )ò n
n ap v,t = a P v,a, t da . (25)

In this case, zero moment ( ) ( )0p v,t p v,tº  will be the
required one [20, 24].

After multiplication by an of the Kramers equation
and acceleration integration, we obtain the recurrent
correlations [20, 24] which result in the closed hierar-
chical system of equations for the moments of the dis-
tribution function
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For brevity, dependence on the velocity v will be
omitted here and further.

Solving cyclic system of equations (26), we come to
the Fokker-Plank equation [27]
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are the drift and diffusion coefficients, respectively.

4. LANGEVIN EQUATION

Langevin equation, which describes evolution of the
order parameter,

( )x= +1 22v D D t& (30)

is assigned to the Fokker-Plank equation (27) [20, 27].
Here x(t) is the white noise with standard properties

( ) ( ) ( ) ( )x x x d¢ ¢= = -, ,t t t tt0 . (31)

When studying transitions between modes of nano-
particles motion, we will use usual approach [28]. To this
end, we write the Langevin equation (30) in the form of
stochastic differential equation

1 22dv D dt D dw< ∗ , (32)

where dw = x(t)dt represents the Wiener process [27].
This allows to introduce a new process z(t) with transi-
tion Jacobian ∋ ( 1

22dz dv D
,

< .
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Since initially a white noise was used, then for the
variable z(t) a stochastic operator of differentiation can
be written in the form of [21]

∋ (dz d z
dz dz dz

dv dz

2
2

2

1

2
< ∗ . (33)

Having obtained by such a way the evolution equa-
tion for the process z(t), we come to the expression for
white noise

∋ (
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where prime denotes velocity v differentiation. Taking
into account expression for the probability density

∋ (∋ ( ∋ (∋ (2exp 1 2p t t dtx x× , 〉  and correlation p(v) = p(x)J

between distributions (J is the Jacobian of the transi-
tion from variable x to variable v), according to [29] we
obtain the following expression:
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where L plays the role of Lagrangian in the Euclidean
field theory
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In the stationary state, acceleration of particles v& = 0
and extremum condition ¶L/¶v = 0 for Lagrange func-
tion leads to the system of equations
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Substituting into (37) dependences (12), (22), (28), and
(29) we obtain phase diagram of the system (Fig. 1a)
and dependence of the stationary value of average ve-
locity of nanoparticles motion on the value of internal
energy specified by external conditions (Fig. 1b).

As seen from Fig. 1a, presence of four regions A, B,
C, and D on the phase diagram is typical for the studied
system. In order to characterize the modes of motion
inherent to each region, we consider in detail Fig. 1b,
where solid thick line denotes the solution of the first
equation of (37); rays A, B, C, and D answer the corre-
sponding points of the phase diagram; straight lines 1
and 2 represent additional solutions arising during the
analysis of the second equation of (37). In this case,
points R corresponding to v = 0 characterize rotational
motion of particles; average velocity for points M and T
v ¹ 0, therefore, the directional rectilinear motion takes
place; points N do not have physical meaning and cor-
respond to additional extremums separating stationary
states of the system; points K and L are also additional
solutions obtained from the second equation of (37).

Besides the analysis of stationary states of the sys-
tem, later we should consider kinetics of the transition
from one state to another.

Fig. 1 – State diagram of the system (a) and dependence of the
stationary value of the average velocity of motion (b) at I = 2,
t = 0,4, vh = 0,1

5. PHASE PORTRAITS OF THE SYSTEM

For the analysis of system kinetics we consider the
Euler-Lagrange equation

L d L R
v dt v v

∝ ∝ ∝
, <

∝ ∝ ∝& &

. (38)

Since  in  the  studied system it  is  necessary to  take
into consideration energy dissipation, then in equation
(37) we have took into account the dissipative function
whose standard form is 2 2R v< & . As a result, we come
to the second-order differential equation

∋ ( ∋ ( ∋ (D
v vD v D D D D D D

D
222

2 2 2 1 2 2 1

2

0
2

ϒ  ϒ ϒ ϒϒ ϒ∗ , , , ∗ , √ , <  
&& & & , (39)

which can be represented as the system of two first-
order differential equations. The given transformation
allows to use the phase plane method for the considera-
tion of the system kinetics based on the phase portraits
on the plane ( )v,v& .

Phase portraits of the system are shown in Fig. 2 and
answer the corresponding regions of the phase diagram
(primes denote the points which correspond to the in-
verse direction of the velocity v).

Analyzing the phase portraits, one can conclude about
rather complex kinetics of the studied stochastic system.
In this case, directional motion of suspended nanopar-
ticles is possible with different average velocities v ¹ 0
(saddles M and T in Fig. 2b, c, d); non-standard kinetic
behavior is typical for the rotational motion (a special
point R in Fig. 2a-d).
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Fig. 2 – Phase portraits of the system for the parameters denoted by the points A, B, C and D on the phase diagram (Fig. 1а)

Moreover, one can say that only rotational motion is
realized for region A of the phase diagram; coexistence
of the rotational and directional motion types is typical
for region B; two types of the directional motion with
different values of the velocity v are possible in the third
region C; and only directional motion of nanoparticles
is realized in the last region D of the phase diagram.

6. CONCLUSIONS

The self-consistent model which allows to describe
the possible motion types of suspended nanoparticles is
constructed as a result of the performed investigation.
Considering the effect of environment which influences
the value of the internal energy ee specified by the tem-
perature of surrounded liquid, possible combinations of

existing motion modes were studied. In this case, only
rotational motion of nanoparticles is possible for small
values of the internal energy ee and wide range of  the
intensities I. Otherwise, in the case of small intensity
of fluctuations and large value of the internal energy ee,
a single directional motion with sufficient average velo-
city takes place. In the intermediate cases, two modes
of coexistence are possible: rotational and directional
motion; directional motion with different velocities (one
of which takes highly insignificant values).

The given results can be useful for both in solving
some physical problems, for example, control of nano-
particles motion in catalytic reactors, and in medical
problems where drug delivery to the specified place of
an organism is rather promising nowadays.
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