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The classification and the kinematic analysis of parametrical resonant interactions in the transit sec-
tion of two-stream superheterodyne free electron laser are carried out. It is found out that realization of
four types of parametrical resonant interactions is possible. A number of the investigated variants of inter-
actions have plural character – hundreds and more harmonics connected with each other simultaneously
participate in a three-wave parametric resonance. A cubically nonlinear multiharmonic theory of plural
parametrical resonant interactions is constructed. It is established that such interactions can substantially
influence the development of physical processes in the investigated system. It is offered to use the plural
parametrical resonant interactions for the formation of a wide multiharmonic spectrum of waves in cluster
two-stream superheterodyne free electron lasers.

Keywords: Free electron lasers, Three-wave parametric resonance, Two-stream instability.

PACS numbers: 41.60.Cr, 52.35. – g

* kulish2001@ukr.net
† lysenko_@ukr.net

1. INTRODUCTION

The present work is the fifth part of the cycle of pa-
pers [1-4] devoted to the study of a new class of relativ-
istic electronic devices, namely, the active FEL-klyst-
rons which are intended for the formation of ultrashort
clusters of electromagnetic field. The models of such
devices based on the single-speed [1-3] and two-speed
[4] relativistic electron beams are considered. General
description of two-stream cluster FEL-klystrons is per-
formed and key features of linear theory of multihar-
monic processes in the transit section are discussed in
[4]. In the given work we continue the analysis of the
processes in the transit section of two-stream active
FEL-klystron but within the nonlinear theory.

It is known that spatial charge waves (SCW) of dif-
ferent types can propagate in two-stream electron sys-
tem [5-9]. Three-wave parametric resonances are rea-
lized between harmonics of such waves. In spite of the
fact that this question was considered before in [10], a
number of types of three-wave interactions was found
to be not studied. We eliminate this shortage here.

Parametrical interactions of electron waves in the
theory of  two-stream FEL are  not  new and have been
studied for not less than 30 years (for example, [11-21]).
However, physical situation in the investigated model
cardinally differs from that studied before. The explicitly
expressed plurality is the specific character of the vari-
ety of three-wave resonances realized here. It appears
that conditions of a three-wave parametric resonance
can be simultaneously satisfied for a set of triples of
interacting waves which are connected with each other
via common waves. As a result, a number of interacting
waves can be hundreds and more in some exceptional
cases. It is evident that general picture of such plural
interactions is really found to be rather complicated and
interest. And this paper is devoted to the investigation
of such interactions.

2. THE MODEL. CONDITIONS FOR PARAMET-
RIC RESONANCES

Theoretical model of the transit section of the two-
stream  FEL  is  represented  in  Fig.  1.  We  consider  the
two-speed electron beam consisted of two partial ones 1
and 2 which are characterized by the velocities v1 and
v2 (v1 – v2 << v1, v2) and the same plasma frequencies
wp1 = wp2 = wp. We assume that the beam is sufficiently
wide, and therefore we can neglect the influence of the
boundaries on the processes of wave interaction. We
suggest that the beam moves in a focusing magnetic
field B0 directed along the Z-axis. We do not consider
the effects connected with quasi-static fields of spatial
charge and neglect the thermal spread of electron ve-
locities. We assume that SCW are multiharmonic. Then
for the resulting electric field strength of SCW we have
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In these correlations index c characterizes the SCW
type (as it will be shown later, c takes values from 1 to
7, see Table 1); pc,m = wc,m×t – kc,m×z is  the  phase of  the
m-th harmonic of c-th wave; wc,m = m×wc,1 and kc,m are
the frequency and wave number of the m-th harmonic
of c-th wave; N is the total number of harmonics which
are considered during problem solving; m is the harmo-
nic number; ez is the unit vector of the Z-axis; notation
“c.c.” denotes the “complex conjugate expression”.

Presence of different SCW types in two-speed elec-
tron beam conditions a great number of interaction types
of their harmonics. Dispersion laws of these waves are
known [5, 6] and can be represented in the form of the
following generalized dispersion relation
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Fig. 1 – Theoretical model of multiharmonic transit section

Table 1 – Classification of SCW in two-stream system

Wave
type (c) sc rc Wave name

1 0 0 Growing wave (w < wcr)
2 0 2/15+ Slow wave (w < wcr)

3 0 2/15- Fast wave (w < wcr)

4 +1 +1 Slow wave of the first beam
(w > wcr)

5 +1 –1 Fast wave of the first beam
(w > wcr)

6 –1 +1 Slow wave of the second beam
(w > wcr)

7 –1 –1 Fast wave of the second beam
(w > wcr)

where ( ) 202010 uuu +=  is the average velocity of two-

speed beam; 2
00 )/(1/1 cug -= ; ( ) 00201 2vvv -=d ; sc

and rc are the sign functions whose values for different
wave types are represented in Table 1.

Index c = 1 corresponds to the growing, 2 and 3 – to
the  slow  and  fast  subcritical  waves,  i.e.  waves  whose
frequency does not exceed the critical frequency

)2/( 23
0dgww pcr = . (3)

As it follows from Table 1, subcritical region is de-
scribed by the value of sign function sc = 0 (c = 1, 2, 3).
In this case, sign function r1 = 0 describes the growing
wave, 2152 +=r  –  the  slow one,  and 2153 -=r  –
the fast SCW. Index c = 4, 5, 6 and 7 characterizes the
overcritical slow and fast waves (w > wcr). Here function
s = – 1 characterizes waves of the first beam (r4 = + 1 –
slow  (c = 4), r4 =  –  1  –  fast  (c = 5)). Function s = + 1
characterizes waves of the second beam (r6 = + 1 – slow
(c = 6), r7 = – 1 – fast (c = 7)).

We take into account that three-wave parametrical
interactions between wave harmonics are realized in
plasma of the two-speed beam. We designate the fre-
quencies and wave numbers of wave harmonics, which
are involved into a parametrical-resonant triple chosen
for the consideration, by the indexes a, b and g (Fig. 1).
Then condition of the parametrical resonance can be
written in the form

pa,ma + n pb,mb = pg,mg (4)

or taking into account definition of the phase

mawa1 + n mb wb1 = mgwg1 , (5)
ka,ma + n kb,mb = kg,mg . (6)

When analyzing three-wave parametrical resonances
with participation of a, b and g waves, it is necessary to
single out physically different types of interactions.
Since from the physical point of view a, b and g waves
are equivalent, an ambiguity can appear if separate
different interaction types: at permutation of a, b and g
indexes nothing is physically  changed, but mathemati-
cally we have different situations. To avoid this ambi-
guity in correlations (4)-(6), we take sign function n to
be equal to

n = –1. (7)

Then a wave, as it follows from equation (5), will have
the largest frequency, g wave – the smallest one, and b
wave – an intermediate frequency. In connection with
this, we will call wave with maximum frequency as a
wave or signal one, wave with minimum frequency – as
g wave or pump, and wave with intermediate frequency
– as b wave. During the analysis we will cast out cases
at which, for example, wave frequency a will not be the
maximum.

Taking into account generalized dispersion relation
(2) and correlation (5), conditions of the parametrical
resonance (6) can be written in the form
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Conditions (5) and (8) determine all possible types of
parametrical resonant interactions within the studied
model.

3. TYPES OF THREE-WAVE RESONANCES

Type 1: sa = sb =sg = 0, ra = rb = rg = 0 – all a, b and
g waves are growing ones (c = 1) and belong to the sub-
critical region (w £ wcr). Since a, b and g waves belong
to the same wave type, their first harmonics are equal:
wa1 = wb1 = wg1.  Then  expression  (5)  is  transformed  to
the form

ma – mb = mg . (9)

We note, a, b and g waves are characterized by sign
functions sa = sb =sg = 0, ra = rb =rg = 0, therefore for
these waves condition (8) is found to be fulfilled.

Thus, condition (9), where ma , mb , mg  are integer
numbers, is the unique condition for the realization of
three-wave resonances of such type. Obviously, it can
be fulfilled for the majority triples of harmonics, and in
this case such triples are connected with each other by
common waves. They say about such situation that plu-
ral parametric resonances are realized in the system.

Type 2: resonant interaction of the growing, fast,
and slow waves, whose frequencies do not exceed the
critical one. Since wc £ wcr for all waves, sign functions
s are equal to zero: sa = sb =sg = 0. Then correlation (8)
takes the form

0=+- bag rrr . (10)
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It follows from this correlation that realization of
three variants of interaction is possible here: 1) inter-
action of the growing, fast, and slow waves; 2) interac-
tion of the growing and two fast waves; 3) interaction of
the growing and two slow waves.

We consider the first variant of interaction. Starting
from correlation (10), we find that sign functions r can
take the following values: 1) 0=ar , 2/15+=br , and

2/15-=gr ; 2) 0=ar , 2/15-=br , 2/15+=gr . As
seen, wave with minimum frequency can be both fast
(c = 2) and slow (c = 3). In this case, condition (10) will
be fulfilled for any wave harmonics of the given reso-
nance type, since it does not depend on their numbers.

We consider condition of three-wave resonance for
harmonic frequencies (5). As follows, if this condition is
fulfilled, for example, for first (ma = mb = mg = m = 1)
harmonics

wa1 – wb1 = wg1, (11)

it will hold for any triples of m-th harmonics

mwa1 – mwb1 = mwg1. (12)

This means that plural parametric resonances be-
tween wave harmonics of different type are realized in
the system.

Now we consider the second variant: interaction of
the growing and two fast waves. For sign functions r,
on the basis of correlation (10), we obtain the following:
1) 2/15-=ar , 2/15-=br , 0=gr ; 2) 2/15-=ar ,

0=br , 2/15-=gr .  In  this  case,  condition  of  three-
wave resonance for harmonic frequencies (5) is trans-
formed, as well as in the previous case, into correlations
(11)-(12). Thus, such parametrical interactions also have
plural behavior.

In the third variant of interaction, where growing
and two slow waves participate, we find from condition
(10) that functions r can take the following values:
1) 2/15+=ar , 2/15+=br , 0=gr ; 2) 2/15+=ar ,

0=br , 2/15+=gr . Condition of three-wave resonance
for frequencies (5) is transformed, as well as in the pre-
vious case, into correlations (11)-(12). Thus, such par-
ametrical interactions have plural behavior.

Type 3: subcritical and overcritical waves interact
in three-wave parametric resonance. It follows from
general considerations that two groups of interactions
can be realized here. Resonances with participation of
two subcritical and one overcritical waves form the first
group. Resonant interactions with one subcritical and
two overcritical waves belong to the second group.

Consider the first group of interactions. We assume
that b and g waves are subcritical (sg = sb = 0), and a
wave is overcritical one. Obviously that in this case the
wave frequency a will be maximum. Then condition of
parametric resonance (8) can be written in the form
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In this correlation we have used the connection between

plasma and critical (3) frequencies, as well as the con-
dition that frequency of overcritical wave exceeds the
critical frequency mgwg1/wcr > 1.

Such group of resonant interactions principally can
have the following values of sign functions rc:
1) rg = 0 or rb = 0 (one of subcritical waves is growing);
2) 215,215 ±=±= bg rr  (both subcritical waves are
not growing).

We consider in detail the first case of interaction.
Taking into account that rg = 0, resonant condition (13)
can be written as
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Hence it appears that resonance is possible only in the
case of different sign functions rb and ra (for example,
ra = – 1 is the fast overcritical SCW, 215+=br  is the
slow subcritical SCW and when sa = – 1).

We pass to the consideration of the second group of
interactions: parametric resonance of one subcritical
and two overcritical waves. We consider the case when
subcritical g wave have minimum frequency and is the
growing one (c = 1, sg = rg = 0). Then, overcritical a
wave have maximum frequency. In this case, condition
of parametric resonance (8) takes the following form:
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As follows from the obtained correlation, the given
type of resonant interaction is possible in the case
when both overcritical waves belong to the same beam:
sa = sb. Then condition (15) takes simpler form

( ) ( ) ( )
( )

3 2
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In this case, sign functions take values sa = + 1,
ra = + 1, rb = – 1. When wave with maximum frequency
is the slow one and has negative energy, effect of explo-
sive instability becomes possible [5, 6, 17].

Understandably that resonant interaction also takes
place in the case when overcritical waves belong to dif-
ferent beams: sa = –sb. Then condition (16) is written as
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Inequality bagg wwd ,<<×m  was used here for simpli-
fication.

The above considered interactions are of an interest
from the practical point of view. We suppose that two-
speed beam is modulated on the frequency wg at the
transit section inlet of heterodyne FEL. This means
that intensive low-frequency SCW propagates in such
beam and, moreover, it rises due to the effect of two-
stream instability. If weak high-frequency SCW a comes
to the system inlet, then because of the above described
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effects of parametric three-wave resonances it is possi-
ble to transform the energy of low-frequency g wave
into the energy of high-frequency overcritical a wave.
In essence, amplification of high-frequency signal of the
frequency wa takes  place  due  to  low-frequency  pump
wave wg by the mechanism of three-wave parametric
resonance. b wave is excited because of interaction of g
and a waves.

Type 4: resonant interactions of three overcritical
waves (wa, wb, wg > wcr). Note, it follows from correlation
(8) that parametric resonance when all three waves
belong to the same beam (sa = sb = sg) cannot be real-
ized. Only one of residual three combinations of sign
functions s satisfies the maximality condition of wave
frequency a and minimality condition of wave frequen-
cy g (7). Then

sa = sb = – sg, (18)

g wave belongs to one beam, a and b waves to another.
Resonant condition (8) takes the form

( ) ( )
( )23
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2

1, 2
1

dg

dws
w bagg

gg
-+-

= prrr
m . (19)

To fulfill the condition mgwg,1 > wcr, it is necessary

sg (rg – ra + rb) = 3. (20)

From condition (20) we find possible variants of sign
functions for the considered case: 1) rg = + 1, ra = – 1,
rb = + 1, sg = + 1, sb = – 1, sa = – 1; 2) rg = – 1, ra = + 1,
rb = – 1, sg = – 1, sb = + 1, sa = + 1. Substituting (20)
into (19) we obtain wg,m = 3wp(1 – d2)/2dg03/2.

Characteristic feature of the interaction of the con-
sidered group of waves is the following: one of the fre-
quencies (wg) is defined by the system properties, it has
a value close to the critical frequency (3), and it does
not depend on the frequencies of two other waves with
which it is in resonance. Considered types of resonant
interactions are used in parametrical electron-wave su-
perheterodyne FEL.

4. EFFECT OF PLURAL SUPERHETERODYNE
RESONANCES

It follows from the above said that for waves, whose
frequencies are less that the critical frequency, plural
parametric  resonances  of  the  1-st  and  2-nd  types  are
realized. Presence of a close coupling between waves of
different interacting triples is the characteristic feature
of such resonances. We note, the given phenomenon is
not principally new for both theory of FEL and physical
electronics in whole. In particular, interactions of any
two parametrically coupled triples of waves (which can,
in the general case, have different physical nature) via
common wave are named the coupled parametric reso-
nances [5, 6].

Thus, multiplicity of connections between different
triples  of  wave harmonics  is  the  key distinction of  the
above described version of coupled resonances from the
traditionally studied ones in theory of FEL. Or, in other
words,  here,  at  least,  two  of  interacting  harmonics  of
each triple are common simultaneously for some other
triples of waves. Due to this fact, many initially isolated

triples of waves are combined into one big system, in
which number of simultaneously occurring resonances
can be equal to tens or even hundreds.

Further  we  note  that  the  discussed  in  the  present
work phenomenon of plural parametric resonances has
one more feature. Namely, in the considered two-stream
system for the same SCW harmonics we have simulta-
neous overlap of two mechanisms of their amplifica-
tion. The first mechanism is conditioned by the effect of
two-stream instability, and due to realization of this
effect we have amplification of SCW harmonics in the
frequency range from the first harmonic to wcr (Fig. 6 in
[4]). The second mechanism is determined by the reali-
zation of the discussed in the given work effect of plural
parametric resonances. The result of such overlap can-
not be interpreted neither by the properties of two-
stream instability, nor by the properties of parametric
resonance.

Situation when one of a triple of resonantly inter-
acting waves receives additional amplification from any
other amplification mechanism is named the effect of
superheterodyne amplification [5, 6]. We note that in the
general case the waves entering into composition of this
triple can have different physical nature. In superhetero-
dyne FEL (SFEL) where the effect of superheterodyne
amplification is realized, these are two transverse elec-
tromagnetic waves (one of which, pump, can have the
shape of magnetic undulator field) and one longitudinal
SCW. The latter in SFEL is common one for three-wave
and “overlaid” mechanisms [5, 6]. Characteristic fea-
ture of the model studied in the present work is the fact
that all three waves which participate in three-wave
interaction are longitudinal SCW. Here, all three waves
from a triple simultaneously get an additional amplifi-
cation from the “overlaid” mechanism, in the given case
– two-stream instability. And since all triples of waves
are coupled with each other, then by analogy with plu-
ral parametric resonance, here we can also say about
plural superheterodyne resonances.

5. ABRIDGED EQUATIONS FOR COMPLEX
AMPLITUDES OF WAVES

Now we perform the quantitative analysis of plural
resonant interactions. To this end, we use the averaged
characteristic method [5, 6] and make calculations in the
cubic approximation over small parameter of the prob-
lem. We note that, as known, one of the features of this
method is the fact that small parameter of the problem
here is not proportional to the maximum amplitude of
waves  as  it  is  traditionally  taken  in  such  problems  of
electrodynamics of plasma-like systems [7]. Exactly this
circumstance allows to calculate the entire spectrum
including its anomalous regions [5, 6]. As a result of
sufficiently cumbersome calculations, we obtain a set of
abridged equations for the harmonic amplitudes Ec,m,
each of which is considered to be slowly varying along
z-coordinate
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Coefficients in (21) are determined by the beam pa-
rameters, frequencies and wave numbers of the corre-
sponding waves
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In correlations (21) dn,±1 is the Kronecker symbol;
Fc,m = Fc,m(Ea, Eb, Eg) are the functions which take into
account cubic nonlinear terms, including those connec-
ted with parametrical resonant interactions in the in-
vestigated system. These functions are rather cumber-
some, therefore we do not write them in explicit form.

Expression for Dc,m (22) is the dispersion function
for m-th harmonic of c-th wave. As it is known, types of
the longitudinal waves which propagate in the system
are determined by the solutions of dispersion equation
D(wc,kc) = 0. Correlation (2) is the solution of this dis-
persion equation.

6. NONLINEAR AMPLITUDE ANALYSIS

Now, we will perform the numerical analysis of the
influence of parametrical resonant interactions of the
first and the second types (see Section 3) on the devel-
opment of two-stream instability by using the obtained
correlations (21).

We assume that monochromatic growing wave whose
frequency is much less than the critical one (3) is formed
on the inlet of the transit section. We consider the case
when fast and slow waves at the inlet into investigated
system are absent. Then only plural parametric reso-
nances of the first type take place in the transit section.
Multiharmonic growing SCW whose spectrum is illust-
rated in Fig. 2 is formed as a result of such interaction.
The spectrum is shown for the case when at the system
inlet (z = 0) amplitude of the first harmonic of the grow-
ing  wave  is  equal  to  10  V/cm  and  its  frequency  is  25
times less than the critical one (wcr / wa,1 = 25), other
harmonics are equal to zero. 50 harmonics were taken
into account in our calculations.

As it was expected, this spectrum has “anomalous”

region from 1-st to 15-th harmonic. Here higher har-
monic has larger amplitude. Moreover, harmonic whose
frequency is equal to the optimal one has maximum
amplitude. The spectrum width, as seen (Fig. 2), is de-
termined by the frequency of the 1-st harmonic of the
growing wave w1 and frequency wmin which corresponds
to the harmonic with minimum amplitude. We also note
that frequency wmin,  as it follows from Fig. 2, is higher
that the critical one wmin > wcr.

Fig. 2 – Dependence of the harmonic amplitude Em of the grow-
ing  SCW  on  the  harmonic  number m.  Frequency  of  the  1-st
harmonic is w1 = 3,1·1011 s–1. Spectrum is plotted for the longi-
tudinal coordinate z = 110 cm. Calculations are performed for
the following parameters: wp = 1,5·1011 s--1; g0 = 4,5; Dg = 0,5

Now consider how the shape of the growing wave
spectrum is changed under the influence of plural par-
ametric resonances of different type waves. We assume
that harmonic amplitudes of fast (wave type 3) and slow
(wave  type  2)  waves,  which  are  in  a  parametric  reso-
nance with 20-th harmonic  of  the  growing  wave,  are
equal to 0,5 V/cm. In calculations, we take into account
the influence of 50 harmonics of each interacting wave.
Other parameters are the same as in the case of Fig. 2.
The results of such calculations are shown in Fig. 3. It
follows  from  the  comparison  of  Fig.  2  and  Fig.  3  that
resonant interactions of longitudinal waves of different
types considerably influence the formation of multihar-
monic growing SCW. Maximum of the spectrum is on
19-th harmonic now. This is conditioned by parametric
resonance of different longitudinal waves which takes
place, first of all, between twenties harmonics of the
corresponding wave types, as well as with the fact that
increment of growth for 19-th harmonic is higher than
for 20-th. Spectrum shape is also significantly changed
(compare Fig. 2 and Fig. 3). Region of “anomalous spec-
trum”  is  increased  from  15  harmonics  in  Fig.  2  to  19
harmonics  in  Fig.  3.  We also  have to  note  that  in  this
case maximum amplitude of the spectrum considerably
increased from 0,6 MV/m in Fig. 2 to 6 MV/m in Fig. 3
(10-fold increase!).

Thus, parametric resonance of longitudinal waves of
different types allows to substantially change the shape
of wide multiharmonic spectrum of the growing longi-
tudinal  SCW. Due to  this  fact,  the  given effect  can be
used for the formation of wide multiharmonic spectrum
of waves in two-stream electron system with specified
parameters, and then for the formation of cluster elec-
tromagnetic waves in multiharmonic superheterodyne
two-stream FEL.

Em, MV/m
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Fig. 3 – Dependence of the harmonic amplitude Em of the gro-
wing SCW on the harmonic number m at z = 109 cm

7. CONCLUSIONS

Thus, classification and kinematic analysis of all
possible variants of three-wave parametrical resonant
interactions in plasma of relativistic two-stream elec-
tron beam is  carried out  in  the  work.  It  is  established

that realization of four groups of parametrical resonant
interactions is possible here. A number of investigated
variants of parametrical resonant interactions has plu-
ral character: hundreds and more coupled with each
other harmonics participate simultaneously in three-
wave resonance.

Multiharmonic cubically nonlinear theory of plural
parametrically resonant interactions in two-speed rela-
tivistic electron beam is also constructed in the work. It
is shown that such resonances considerably influence
the development of physical processes in the studied
system. It is proposed to use the considered modes for
the formation of wide multiharmonic wave spectrum in
two-stream electron system, as well as in cluster super-
heterodyne two-stream FEL.
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