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In this work, we have investigated theoretically the propagation characteristics of TM 

plasmons in a cylindrical wave-guide structure of a lateral antiferromagnetic - non 

magnetic superlattices (LANS) bounded by a metal. We derived the Eigenmodes 

equation and study the dispersion properties of transverse magnetic (TM) plasmons 

which propagate on the waveguide. We found that, backward TM plasmons can be 

tuned by adjusting the thickness of the waveguide to small reduced radius. We also 

found that the plasmons turn from backward to forward when the bounded material 

is vacuum. We also illustrated the dependence of the wave index nx on the magnetic 

fraction f1 of (LANS). Larger propagation lengths of TM plasmons are realized at 

small reduced radius and less magnetic material in LANS. The energy flow on the 

waveguide is also analyzed. We studied the dependence of the power flow on the 

electric permittivity of the metal m. More forward plasmons are observed by increasing 

m. 
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1. INTRODUCTION 
 

Surface plasmons (SPs)have attracted much attention in recent years. (SPs) 
are electromagnetic oscillations localized at the interface between dielectric 
and metal materials. Controlling the propagation of light at the nanoscale is 
one of the challenges in photonics. (SPs) provide a key opportunity to 
achieve this goal, due to their relatively small decayed fields [1, 2]. (SPs) 
dispersion can be strongly controlled by geometry. Initial experiments on 
Plasmon optics were carried out at planar metal/ dielectric interfaces, 
demonstrating basic control of plasmons. Insulator-metal-insulator 
structures were investigated, and have demonstrated confinement of light 
though at high loss [3, 4]. The metal – insulator-metal geometries, have 
demonstrated lower loss, higher dispersion [5, 6]. A disadvantage of planar 
structures is that they only confine light in one transverse direction. 
Recently, coaxial waveguides composed of metal core surrounded by a 
dielectric cylinder and clad by a metal outer layer have been introduced, 
that confine light in all transverse directions [7, 8]. Rene de Waele et al. [9] 
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theoretically studied the dispersion of coaxial Ag/Si/Ag plasmon waveguides 
and demonstrated that for well-chosen geometries, modes with a negative 
index are observed at optical frequencies. The negative- index modes have a 
large propagation length than the positive- index modes depending on the 
dielectric thickness. Negative index has been realized in microwaves 
[10, 11], THz waves and optical wave-lengths [12]. Quite recently, Wang 
and Mittleman [13]  found that  a  simple  wire  can be used as  effective  THz 
waveguide. This found the way for a wide range of new applications for THz 
sensing and imaging. Qing Cao et al. [14] predicted that the attenuation 
coefficient is reduced if a copper wires waveguide is used. This due to the 
huge value of the relative permittivity ( – 6.3 ´ 105) and propagation of an 
azimuthally polarized plasmons along the wire. Huang et al. [15] considered 
the wave propagation along a cylindrical nanowire waveguide made of 
indefinite index metamaterials. They found that the backward – wave modes 
can have very large effective index. These nanowires can be used as phase 
shifters and filters in optics and telecommunications. More work has been 
done in investigating the waves in multilayer's structures which composed 
of  magnetic  and non magnetic  layers  such as  fef2/znf2 superlattice. Shabat 
and Mousa [16-19] discussed the propagation characteristics of nonlinear 
electromagnetic TE surface waves in a planer waveguide structure of a 
lateral antiferromagnetic/nonmagnetic superlattices (LANS) film bounded by 
a nonlinear dielectric cover. The non-reciprocal and bistability behaviors 
have been noticed. Mousa [20] studied the propagation characteristics of 
nonlinear TM surface waves at (LANS) film bounded by a nonlinear cover. It 
is found that, Magnetic fraction increases the nonlinear waves power level. 
In this paper, we investigate the propagation characteristics of TM plasmons 
guided by an optical structure. This structure consists of a lateral 
antiferromagnetic/nonmagnetic superlattice (LANS) such as fef2/znf2 super-
lattice cylinder which bounded by a metal of electric permittivity em. 
Superlattices are described with an effective medium theory [19-21]. Such 
description is valid when the wave lengths of the excitations are much 
longer than the superlattice period where bL << 1, where b is the magnitude 
of the wave vector and L = L1 + L2, is the period of the superlattice, L1 and 
L2 are the thickness of the untiferromagnetic layers and non-magnetic layers 
, respectively [22]. f1 = L1/L2  and f2 = L2/L, are introduced and called the 
magnetic and non-magnetic fractions, respectively where. 
 
2. DERIVATION OF THE DISPERSION RELATION 
 

The structure geometry under consideration is shown in Fig. 1. We consider 
the wave propagation on a cylindrical waveguide. The axis of the waveguide 
is along the z direction.  
 The effective dielectric tensor of (LANS) is described as [23]: 
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Fig. 1 – The proposed cylindrical waveguide composed of LANS and a metal 
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The electric and magnetic field vectors for TM plasmons propagating along 
z-axis with an angular frequency w and a wave number b will take the form 
[15]: 
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Due to the symmetry of the waveguide, all of the field components can be 
expressed in terms of the longitudinal components Ez and Hz. In the polar 
coordinate system, by Maxwell's equations, the fields can be written inside 
the waveguide pr a  and outside the waveguide fr a  with a the radius of 
the cylinder, as: 
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The wave equations for longitudinal components inside the waveguide 
( pr a ) are:  
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The wave equations for longitudinal components outside the waveguide 
( fr a ) are: 
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The solutions are expressed in terms of the Bessel functions of various kinds 
as [24]: 
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where 2 2 2 2
0 0,x o on k k cb w e m w= = = ,e0 and m0 are the dielectric permittivity 

and magnetic permeability of free space respectively, A and C are amplitude 
coefficients which can be determined by the boundary conditions. 
 For the transverse magnetic TM plasmons, Hz = 0, by substituting Eq.(7) 
into Eq.(3), the magnetic field is then obtained as: 
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Here, we used ( ) ( )¢ = -0 1J x J x and ( ) ( )¢ = -0 1K x K x  

By using Eq.(7), The continuity of Ez at the interface r = a gives: 
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By using Eq.(8), The continuity of Hj at the interface r = a gives: 
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From recurrence relations of Bessel function, we get: 
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Dividing Eq. (11a) by xJn(x), and Eq.(11b) by xKn(x) one obtains: 
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We obtain  
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By substituting Eq.(12) and Eq.(13) into Eq.(10), then the dispersion 
equation of TM plasmons is obtained as: 
 

 ( ) ( )e e=0 0|| mf Ka g Ra . (14) 
 

The existence of the solution of Eq.(14) results from the negative real value 
of em. This negative value is due to the electron plasma contribution when 
the frequency is lower than the plasma frequency. This Eigen mode is called 
TM plasmon. 
The solutions of the above dispersion equation give all the TM modes. For 
the mth TM band, one has £ £0, 1,m mx Ka x . Here xn,m is  the  mth  zero  of  

Jn(x)  away  from  origin.  These  values  can  be  fed  to  Eq.(14)   and  
corresponding Ra values are obtained. The reduced radius can be found by 
aid of Eq. (7b) as: 
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by substituting for (ba)2 from Eq.(15a) into Eq.(15b). The reduced radius is: 
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Once Ka and Ra values are fed into Eq.(16), the reduced radius is obtained. 
The effective index of the waveguide nx is  also  evaluated  by  squaring  
Eq.(7b) and multiplying by a2 as: 
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By using Eq.(17a) and Eq.(17b) then: 
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3. POWER FLOW 
 

Inside the waveguide, pr a , by using Eq.(7a) one has: 
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By aid of Eq.(3a), Eq.(3b) and Eq.(15a), the electric field is: 
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and the magnetic field is: 
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The power flow inside the waveguide is [15]: 
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By substituting Eq.(19b) and Eq.(19c) into Eq.(20), then the power flux of 
the plasmons propagating along the waveguide axis is  
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Here we set the coefficient e= 0 1||/ ( )A K k a J Ka . 
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By substituting Eq.(12) and Eq.(22) into Eq.(21) we obtain: 
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Outside the waveguide, fr a , by using Eq.(7a) one has: 
 

 ( )= 0zE CK Rr  (24a) 
 

By aid of Eq.(4a), Eq.(4b) and Eq.(15a), the electric field is: 
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and the magnetic field is: 
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The energy flow outside the waveguide is: 
 

 j j

¥
= -ò * *1

( )
2

out
z r r

a

P E H E H rdr . (25) 

 

By substituting Eq.(24b) and Eq.(24c) into Eq.(25), then the power flux of 
the plasmons propagating along the waveguide axis is  
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Here we set the coefficient e= 0 1/ ( )mC R k a K Ra . 
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By substituting Eq.(12) into Eq.(26) we obtain : 
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The total power flow (Pz) is given as: 
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The total power is normalized as [15]: 
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Where - á ñp p1 1zP . 

 
4. NUMERICAL RESULTS AND DISCUSSION 
 

To compute the dispersion curves directly, and find infinite number of 
solutions we solve the dispersion equations numerically, this is done by 
feeding Ka values in the range £ £0, 1,m mx Ka x  to Eq.(14). Ra values are 

obtained. The obtained values of Ka and Ra can be fed to the effective wave 
index expression mentioned in Eq.(18). 
Numerical calculations for dispersion curves are found, examples of the 
dispersion curves are computed for a lateral FeF2/ZnF2 super lattice 
waveguide bounded by a metal. We take the parameters as follows [22]: 
e1 = 5.5 for antiferromagnetic layers, e2 = 8 for the nonmagnetic layers, 
em = -4 for metal and em = 1 for vaccum. The effective wave index nx has 
been plotted versus the reduced radius of the waveguide as shown in 
Fig.(2a). It illustrates the first six bands of TM plasmons on the waveguide. 
For example, the first band's range is £ £0,1 1,1( )x Ka x  of  (x0,1 = 1.2, 

x1,1 = 1.5), Ra value decreases from (1.26 to 1.13), k0a values increases 
from (0.05 to 0.29) and nx values decreases from (1.2 to 0.07). The second 
band's range is £ £0,2 1,2( )x Ka x  with  (x0,2 = 4.44, x1,2 = 4.6), Ra value 

decreases from (4.5 to 3.53), k0a values increases from (0.07 to 0.92) and nx 
values decreases from (1.22 to 0.03) and the third band's range 
is £ £0,3 1,3( )x Ka x  with  (x0,3 = 7.56, x1,3 = 7.9), Ra value decreases from 
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(7.7 to 5.95), k0a values  increases  from  (0.11  to  1.55)  and  nx values 
decreases from (1.22 to 0.07). We see that for small k0a, TM plasmons are 
backward traveling as in the fist band. As k0a increases some of them are 
forward traveling but the majority are backward. These waveguides can thus 
be used as optical buffers in integrated optical circuits. The reason is that, 
these waveguides support both forward and backward plasmons. Fig. 2b 
displays the nx - k0a variation  for  the  first  six  TM  bands,  when  the  
waveguide  is  (LANS)  bounded  by  a  vacuum.  As  we  expect  it  shows  the  
forward traveling waves and nx reaches its asymptotic value quite rapidly.  
As illustrated in Fig. 3a, for the first TM band, nx has been plotted against 
k0a for different magnetic fraction f1 of the LANS waveguide. It illustrates 
the dependence of nx and k0a on the magnetic fraction. It shows that as the 
magnetic fraction f1 increases to the values (0.4, 0.7 and 0.9) a large change 
of nx occurs. The curves are shifted to the starting values of nx (1.22, 1.06 
and 0.94) while k0a is  stopped  at  the  values  (0.3,  0.29  and  0.27)  
respectively. Larger propagation lengths of TM plasmons are realized at 
small reduced radius and less magnetic material in LANS. This dependence 
of nx on the magnetic fraction is also observed at nearly adjacent values of 
k0a for  forward  traveling  plasmons  on  LANS  waveguide  bounded  by  a  
vacuum as shown in Fig. 3b. Fig. 4a-b displays the same behaviors  of the 
second  TM band as the first TM band but the second TM band is observed 
at larger k0a than the first . The effect of electric permittivity em of a metal 
on dispersion of the second TM band is noticed in Fig. 5. It describes nx 
versus k0a for a series of decreasing negative values of electric permittivity 
em (–  4,  –  2,  –  1).  It  displays  high  values  of  nx and large propagation 
lengths which are reached by decreasing em. Once the propagation 
characteristics are determined from the dispersion equation(14), the 
obtained values of the effective wave index can be fed to the power 
expression mentioned in Eq.(28). The normalized power áPzñ has been plotted 
versus the waveguide reduced radius k0a for the first five TM bands, when 
the waveguide is  (LANS) bounded by a  metal  as  noticed in Fig.6.  It  shows 
that for some portion of the bands áPzñ is negative, the group velocity and 
the phase velocity are in opposite directions and thus plasmons are 
backward. For the first band, at critical radius (k0a = 2.1) where áPzñ = 0 the 
group  velocity  is  zero  and  the  backward  and  forward  plasmons  become  
degenerate, the energy flow inside the waveguide cancels out that in LHM. 
By increasing k0a values, the áPzñ values increase sharply to positive values 
until reaches the higher value of 1 where it becomes constant while k0a 
values increase. This means that the waves turn to the forward propagation 
where energy flow and phase propagation are in the same directions. Figure 
7 also describes áPzñ versus nx of the first TM band for a series of increasing 
negative values of electric permittivity em (– 1, – 6, – 8, – 15). It displays 
that by increasing of nx, áPzñchanges from negative values (backward 
propagation) to positive values (forward propagation). Increasing em to the 
values (– 1, – 6, – 8, – 15) shifts the curves to starting values (– 0.59, –
 0.23, – 0.18, 0.13) respectively, and more forward plasmons are observed. 
At em = – 15, all plasmons are forward traveling.  
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Fig. 2 – Dispersion  curves  of  TM  plasmons  for  the  first  six  bands  of  LANS  
waveguide bounded by a metal, em = – 4,  The  curves  are  labeled  with  values  of,  
ε1 = 5.5, ε2 = 8,  and magnetic fraction f1 = 0.4 (a). Dispersion curves of TM guided 
waves for the first six bands of LANS waveguide bounded by vacuum. The curves are 
labeled with values of, ε1 = 5.5, ε2 = 8, em = 1 and magnetic fraction f1 = 0.4 (b) 
 

  
 

Fig. 3 –  Dispersion  curves  of  the  first  band  of  TM  plasmons  of  LANS  waveguide  
bounded by a metal, em = – 4, for (1) f1 = 0.4, (2) f1 = 0.7 and (3) f1 = 0.9 (a). 
Dispersion curves of the first band of TM guided waves of LANS waveguide bounded 
by vacuum for (1) f1 = 0.4, (2) f1 = 0.7 and (3) f1 = 0.9, e1 = 5.5, ε2 = 8 (b) 
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Fig. 4 – Dispersion  curves  of  the  second  band  TM  plasmons  of  LANS  waveguide  
bounded by a metal, em = – 4, for (1) f1 = 0.4, (2) f1 = 0.7 and (3) f1 = 0.9 (a). 
Dispersion  curves  of  the  second  band  of  TM  guided  waves  of  LANS  waveguide  
bounded by vacuum for (1) f1 = 0.4, (2) f1 = 0.7 and (3) f1 = 0.9, e1 = 5.5, ε2 = 8 (b)  
 

 
 
Fig. 5 – Dispersion curves of the second band TM plasmons of waveguide bounded by 
a metal for (1) em = – 4, (2) em = – 2 and (3) em = – 1, e1 = 5.5, ε2 = 8, f1 = 0.4  
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Fig. 6 – Normalized power flow of TM plasmons as a function of the reduced radius 
for the first TM five bands of waveguide bounded by a metal for em = – 4, e1 = 5.5, 
ε2 = 8, f1 = 0.4 
 

 
 

Fig. 7 – Normalized power flow of TM plasmons as a function of the effective wave 
index  for  the  first  band  of  waveguide  bounded  by  a  metal  for  (1) em = – 1, (2) 
em = - 6, (3) em = – 8, em = – 15, e1 = 5.5, ε2 = 8, f1 = 0.4 
 
5. CONCLUSIONS 
 

The obtained results of a new cylindrical waveguide structure containing a 
metal and superlattices significantly expand the possibilities of designing 
and constructing new optoelectronics devices and systems. 



 
 
 
 TM PLSMONS IN A CYLINDRICAL SUPERLATTICES… 27 

REFERENCES 

1. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003). 
2. E. Ozbay, Science 311, 189 (2006). 
3. M.I. Stockman, Phys. Rev. Lett. 93, 137404 (2004). 
4. E. Verhagen, A. Polman, L. Kuipers, Opt. Express 16, 45 (2008). 
5. J.A. Dionne, L.A. Sweatlock, H.A. Atwater, A. Polman, Phys. Rev. B 73, 035407 

(2006). 
6. H. Miyazaki, Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006). 
7. W.J. Fan, S. Zhang, B. Minhas, K.J. Malloy, S.R. J.Brueck, Phys. Rev. Lett. 94, 

033902 (2005). 
8. F.I. Baida, A. Belkhir, D.V. Labeke, O. Lamrous, Phys. Rev. B 74, 205419 (2006). 
9. R. Waele, S.P. Burgos, H.A. Atwater, A. Polman, Opt. Express 18, 12770 (2010). 
10. C.G. Parazzoli, R.B. Greegor, K. Li, B.E.C. Koltenbah, M. Tanielian, Phys. Rev. 

Lett. 90, 107401 (2003). 
11. P.V. Parimi, W.T. Lu, P. Vodo, S. Sridhar, Nature 426, 404 (2003). 
12. C.M. Soukoulis, S. Linden, M. Wegener, Science 315, 47 (2007). 
13. K. Wang, D.M. Mittleman, Nature 432, 376 (2004). 
14. Q. Cao, J. Jahns, Opt. Express 13, 511 (2005). 
15. Y.J. Huang, W.T. Lu, S. Sridhar, Phys. Rev. A. 77, 063836 (2008). 
16. H.M. Mousa, M.M. Shabat, H. Khalil, D. Jager, Proc. Of SPIE 5445, 274 (2003). 
17. H.M. Mousa, M.M. Shabat, Int. J. Mod. Phys. B 19, 4359 (2005). 
18. H.M. Mousa, M.M. Shabat, Int. J. Mod. Phys. B 21, 895 (2007). 
19. M.M. Shabat, H.M. Mousa, Proc. SPIE, 6582, 65820K (2007). 
20. H.M. Mousa, The Islamic University Journal, 15, 147 (2007). 
21. M.C. Oliveros, N.S. Almeida, D.R. Tilley, J. Thomas, R.E. Camley, J. Phys. Condens. 

Matter 4, 8497 (1992). 
22. X. Wang, D.R. Tilley, Phys. Lett. A 187, 325 (1994). 
23. N.S. Almeida, D.L. Mills, Phys. Rev. B 38, 6698 (1988). 
24. G.N. Watson, A Treatise on the Thoery of Bessel Functions, 2nd ed. (Cambridge: 

Cambridge U. Press: 1966). 

http://dx.doi.org/10.1038%2Fnature01937
http://dx.doi.org/10.1126%2Fscience.1114849
http://dx.doi.org/10.1103%2FPhysRevLett.93.137404
http://dx.doi.org/10.1364%2FOE.16.000045
http://adsabs.harvard.edu/cgi-bin/nph-abs_connect?fforward=http://dx.doi.org/10.1103/PhysRevB.73.035407
http://dx.doi.org/10.1103%2FPhysRevLett.96.097401
http://dx.doi.org/10.1103%2FPhysRevLett.94.033902
http://dx.doi.org/10.1103%2FPhysRevLett.94.033902
http://dx.doi.org/10.1103%2FPhysRevB.74.205419
http://dx.doi.org/10.1364%2FOE.18.012770
http://dx.doi.org/10.1103%2FPhysRevLett.90.107401
http://dx.doi.org/10.1103%2FPhysRevLett.90.107401
http://dx.doi.org/10.1038%2F426404a
http://dx.doi.org/10.1126%2Fscience.1136481
http://dx.doi.org/10.1038%2Fnature03040
http://dx.doi.org/10.1364%2FOPEX.13.000511
http://dx.doi.org/10.1103%2FPhysRevA.77.063836
http://dx.doi.org/10.1117/12.560650
http://dx.doi.org/10.1142%2FS0217979205032796
http://dx.doi.org/10.1142%2FS0217979207036746
http://dx.doi.org/10.1117/12.721062
http://dx.doi.org/10.1088/0953-8984/4/44/011
http://dx.doi.org/10.1088/0953-8984/4/44/011
http://dx.doi.org/10.1016%2F0375-9601%2894%2990009-4
http://dx.doi.org/10.1103%2FPhysRevB.38.6698

	jnep_2011_V3_N3_15-27

