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An asymptotical model of E-polarized electromagnetic wave interaction with weakly
filled  prefractal  diffraction  grating  (PFDG)  is  considered  in  detail  on  the  base  of
rigorous electromagnetic theory. A stage of construction for Cantor set with variable
Hausdorff dimension is used for PFDG order. An integral equation technique with
usage of asymptotical approach and Carleman inversion formula is applied. Asymp-
totical formulas for determination of the main electromagnetic characteristics are
obtained. Numerical experiments are done to find the fractal properties of the pre-
fractal grating.
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1. INTRODUCTION

In due time, the theory of periodic diffraction gratings (DG) of the strip type
and different modifications has been thoroughly developed by the school of
Kharkov radiophysicists [1-3]. Investigation of the so-called “fractal” DG was
started with the appearance of the theory of fractals, but the term “fractal”
does not have a clear definition up to now and is interpreted differently. It
is possible to single out from the variety of “fractal” objects a rather wide
class of the so-called self-similar fractals, whose clear definition is the follo-
wing: this is a set with the Hausdorff dimension (HD) which is larger than
the topological one [4].
 In the present work we consider PFDG in the form of the system of strips
placed in accordance with the segments,  which form a certain stage of  the
construction of the perfect Cantor set (PCS) with variable fractal dimension
[5]. We have to note that the introduced term “prefractal” DG foresees not
an infinite sequence of DG elements according to the rule of the chosen
fractal, but, first of all, their limited amount. Therefore, this term can be
also interpreted as the truncated, reduced, shortcut fractal, almost fractal
or quasi-fractal. In this case formulation of the electrodynamic problem is
classically rigorous within certain traditional assumptions [6]. The aim of the
present paper is the solution of the boundary-value problem of diffraction of
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a plane electromagnetic wave on a finite prefractal sequence of grating ele-
ments and the detailed analysis of scattered fields for the asymptotic case of
the model of weakly filled DG.

2. STATEMENT OF THE PROBLEM

A plane electromagnetic wave arrives to a system with certain finite amount
of infinitely thin and perfectly conducting cylinder strips with parallel edges.
Arrangement of the strips in the system should be strictly ordered in accor-
dance with different mathematical laws, which correspond to the processes
of the PCS construction with variable HD. Therefore, statement of the prob-
lem should be itemized with taking into account pointed new mathematical
order of the strip arrangement.
 Since generatrices of the strips are parallel, the Maxwell equations are
devided into two independent systems of equations in separated components
of the electric and magnetic fields. Their solution leads to the two-dimen-
sional Helmholtz equation and two types of the boundary conditions on the
elements of scatterer directrices. From the mathematical point of view, we
have the external Dirichlet (E-polarization) and Neumann (H-polarization)
problems for the mentioned equation. These problems have a unique solution
when the radiation condition at infinity (by Sommerfeld) and the conditions
in boundary points of the Meixner arc [7] hold.
 To study the above formulated external boundary problems of mathema-
tical physics, we use a classical method of integral equations (IE), which not
only decreases the problem dimension, but also reduces the external problem
of mathematical physics to the IE solution on the corresponding finite amo-
unt of smooth arcs that essentially simplifies the problem. Moreover, IE are
more convenient mathematical models in comparison with the boundary or
boundary-value problems for partial differential equations relative to their
numerical solution by computer and asymptotical analytical solution.
 In the present paper we only consider the external Dirichlet problem for
two-dimensional Helmholtz equation that corresponds to the diffraction prob-
lem of a plane electromagnetic wave, whose electric field vector is parallel to
generatrices of the strips (E-polarization).
 Using the fundamental solution of the Helmholtz equation for two-dimen-
sional free space and the IE method, we obtain the system of equations
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Here (1)
0 ( )H z  is the zero-order Hankel function of the first kind; functions

( )n
mx t  are initial variables of the PCS construction process with variable HD;

q1 is the first component of the directing vector of a plane wave. To impart to
this system, which is the basic mathematical model, the scattering process,
we will further consider the PCS construction process with variable HD.

3. THE PCS CONSTRUCTION PROCESS WITH VARIABLE HD

Simplicity of the initial object and iteration principle of the formation is the
characteristic feature of the PCS. We start the PCS construction from the
segment of the length of 2a. From the middle of this segment we remove the
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interval of the length of 2b, of course, a > b. We call obtained two segments
the former of the given set or its first construction stage. In Fig. 1 we show
the initial segment (black line on the abscissa axis) and three stages of the
construction: two segments of the first stage are depicted in red.

Fig. 1 – Stages of the PCS construction with HD 0,5

 To make the object to be self-similar, we reduce former to the size of its
separate segment and substitute them. In this case we obtain four segments
reduced from the previous ones by k = 2a/(a – b) > 2 times, which are shown
in Fig. 1 in black on the level y = 0,2. In particular, when b = a/3 we have
k = 3, i.e. the self-similarity coefficient of the classical PCS.
 The next step – transition to the third stage of the fractal construction –
is one more reduction of the former by k times and segment substitution of
the second stage, it leads to eight segments shown in red in Fig. 1 on the level
y = 0,3. If continue this process infinitely, the perfect set will be formed,
which slightly differs from the classical one and is its particular case. There-
fore, we can talk about whole class of perfect sets, which depend on the self-
similarity coefficient k.
 Calculation of the HD in common with the classical PCS leads to the ex-
pression ln2/lnk. Really, during construction on the n-th  step  we  have  2n

intervals of the length of (a – b)/kn–1. Then, coverage with 2n elements will
be minimal d-coverage with d = (a – b)/kn–1, i.e.
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Hence, boundary transition d = (a – b)/kn–1 ® 0 only in the case 2/k s = 1
gives non-zero and non-infinite value of the Hausdorff s-measure [8]. To
determine the critical value s, which is the HD, we find the logarithm of the
identity 2 º k s. As a result, we obtain the mentioned expression s = ln2/lnk.
Since the self-similarity coefficient k is more than 2, the HD of the perfect
set is changed in the interval (0, 1).
 Due to self-similarity the construction process can be sufficiently simply
formalized by linear functions that is important for definiteness of equations
(1). In particular, the first stage of the construction with taking into account
the normalization on the wavelength (two segments of the relative size 2a are
placed on the relative distance 2(a – b) from each other) can be specified by
functions b a= - +1 ( ) ( 1)mmx t t , m = 1,2. Segments of the second stage of the
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PCS construction are formalized by functions b b a= - + +2
2 2( ) ( 1) ( )m

mx t t  for

m = 1,4 and b b a= - - + +2
2 2( ) ( 1) ( )m

mx t t  for m = 2,3, where b2 = b/k, a2 = a/k,
k = 1 + b/a > 2. For an arbitrary natural number n, which defines the stage
of the construction, we have the ordered sequence of functions ( )n

mx t , where

subscript m = 1, …, 2n.
 System of singular IE (1) can be considered as the basic mathematical mo-
del of the scattering process of the plane E-polarized electromagnetic wave
with plane prefractal grating.

4. ASYMPTOTICAL MODEL OF THE E-POLARIZED WAVE
SCATTERING BY PFDG

While constructing the PCS, parameter an is decreased not less than doubly
during transition from one stage of the construction to another. Therefore,
starting from a certain stage of the construction it can be considered as small
as it is necessary, and, thus, one can expect the efficiency of the asympto-
tical model of narrow strips or weakly filled DG.
 Since ( ) ( ) ( )n n

m m nx x t tt r a t- = + -l l , where modulus of (0) (0)n n
m mx xr = -l l

is the distance between strip centers with numbers l  and m, have neglected
terms of the first order of smallness with respect to an, we obtain the system
of singular IE with pronounced logarithmic singularity
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Here ( )p r= ¹l l l(1)
0 2 ( )m mR H i m  are the off-diagonal and RRR = ln(gan/2i) are the

diagonal coefficients. Using the known Carleman inversion formula we obtain
the following vector equation:
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incidence angle of a plane wave on the grating.

 To find the unknown vector j
r
, we integrate both sides of the vector equa-

tion (3), then a system of linear algebraic equations of the following matrix
form will be obtained:

Â - × =
r r

( ln2 )n n nE j q , (4)

where En is the unit matrix; in this case the desired vector-function has the
following form:
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 Thus, from the mathematical point of view, the scattering problem of a
plane electromagnetic wave by a system of strips, which forms PFDG, within
made assumptions can be considered solved. Further we pass to the nume-
rical experiments in order to determine one of the main characteristics – the
directional pattern, which will help to reveal the fractal features of PFDG.

5. NUMERICAL ANALYSIS OF THE DIRECTIONAL PATTERNS

After mathematical solution of the problem, scattered electromagnetic field
around  scatterer  can  be  represented  by  the  function  defined  as  a  sum  of
integral transformations of the solution jR (t) [6]
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Hence, using the known procedure we obtain scattered electromagnetic field
in the far region, which is of a great physical interest [6]. Usually, during
geometrical presentation of this characteristic, it is necessary to plot graphs
of the coefficient [6, 7] j j== - ål l
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denotes the Fourier transformation, which characterizes the field distribu-
tion in the far region versus the polar angle. In the case of the asymptotical
model ( ) [ ( cos ), ] 2 2T
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. The numerical experiment is carried out

in order to reveal the fractal properties of DG. To perform this, we compare
the dependences of |A(j)| on the polar angle for DG, which correspond to the
adjacent stages of the PCS construction. In Fig. 2 we present the directional
patterns of  DG for the value j0 = p/2, which correspond to the first (solid
line, n = 1) and the second stages of the PCS construction with HD = 0,2 (for
all a = b/31). Here we should note that the lateral dimension of DG is closed
to the wavelength.

a + b = 3p/4: a + b = p:

a + b = 3p/2: a + b = 2p:

a + b = 5p/2: a + b = 3p:

Fig. 2 – Directional patterns of prefractal grating, which corresponds to the first and
the second stages of the PCS construction (a = b/31)
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 Within assumptions of the asymptotical model, shapes of the directional
patterns for different n are the same, though there are distinctions in sizes,
because we have different filling of PFDG. If pass to the third stage of the
construction, the size will be lesser but the shape will not be changed. This
implies that the shape of the directional pattern is a general property for all
PFDG starting from the first stage of the construction, but only for the poin-
ted correlations between the wavelength and the initial geometric parameters.
With the decrease in the wavelength, individual elements of the first stage
of the construction are revealed more and more, while individual elements of
the second stage of the construction are not tangible. Further decrease in the
wavelength leads to the following: parameter a is not small any more and the
case n = 1 is outside of the given asymptotical model, but parameter a2 = a/k
remains small and the case n = 2 still gives reliable results. Therefore, we pass
to its comparison with the case n = 3, i.e. the next (third) stage of the PCS
construction. Here individual elements of the second stage are revealed and
individual elements of the third stage are not tangible. In Fig. 3 we present
the directional patterns of PFDG, which correspond to the second (dark line)
and the third (red line) stages of the PCS construction with the same HD 0,2
and correlation a = b/31.

a = p/2: a = p:

a = 2p:

Fig. 3 – Directional patterns of prefractal grating, which corresponds to the second
and the third stages of the PCS construction (j0 = p/2)

 We note that here the lateral dimension of DG substantially exceeds the
wavelength, but the grating, which corresponds to the second stage, has two
rather remote sublattices (in Fig. 1 they are depicted in black on the level
y = 0,2), whose lateral dimension defined by the parameter a is closed to the
wavelength.
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 Performed numerical experiments with the calculation of one of the main
DG characteristics – its directional pattern – show the possibility to reveal
the fractal properties of prefractal object using this characteristic.

6. CONCLUSIONS

In the present work an asymptotical model of the interaction process of the
E-polarized wave and weakly filled prefractal grating is studied in detail.
For mathematical order of DG directrices it is proposed to take the certain
stage of the PCS construction with variable HD, which is determined by the
expression ln2/lnk. Investigation is performed based on the rigorous electro-
magnetic theory by the IE method using asymptotics and Carleman inversion
formulas. Asymptotical expressions of the initial variables of the mathema-
tical model, which allow to determine one of the main characteristics – the
directional pattern of prefractal grating, which reveals the fractal properties
of DG, are obtained.
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