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Zink oxide (mineral name: Zincite) is an attractive wide band gap semiconductor due 

to its large number of industrial applications such as in the production of solar cells, 

liquid-crystal displays, electrochromic devices, LED, as well as adhesive taps, 

automobile tires, ceramics, glass, varistors, etc. It is due to versatile nature of ZnO, in 

we have studied its thermal properties at high temperatures. Theoretically, complete 

ab initio investigations at elevated temperatures are restricted due largely to 

computational complexity of many-body nature. We have therefore used an consistent 

iterative scheme to include thermal effect by combining the universal equation of 

state (UEOS) to the Mie-Gruneisen hypothesis. It is demonstrated that from the 

knowledge of cohesive properties at ambient condition various thermodynamic 

properties can be predicted at finite temperatures and pressures. For example, 

presently calculated relative volume-thermal expansions, static EOS are in good 

accordance with experimental results.  
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1. INTRODUCTION 
 

Zink oxide (ZnO) has wurtzite phase at ambient condition. The ambient 
properties of such oxide is known experimentally and also through first 
principles calculation [1]. At elevated temperatures, characterization of 
materials pause difficulty at the complete ab intio level [2-4]. Theoretically 

situation becomes more complicated also due to the coexistence of partial 
covalent and metallic banding nature in these materials. It is due to this 
reason one may calculate various physical quantities at an extreme 
environment rather empirically. In this regard, we have combined universal 
equation of state (UEOS) formalism due to Vinet et al. [5] to Mie-Gruneisen 
hypothesis to include the temperature effect in a consistent manner [4, 6]. 
 
2. FORMULATION  
 
Total pressure at temperature T is given by, 
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where p0 (x) is the cold pressure and is given by Vinet’s UEOS scheme [5]. 

Thermal energy (Eth) corresponding to lattice vibrations is assumed to be 

linear in temperature and is taken as  3 kBT. Thus, the second term in 
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Eq. (1) represents the thermal pressure in terms of thermodynamic 
Gruneisen parameter with,  
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where g0 is the Gruneisen parameter at ambient condition and is calculated 
from the Poisson ratio (s) as suggested in Ref. [7], and d = 2 [4, 6]. 
 To include thermal effect, we assume: (i) Pressure derivative of bulk 
modulus does not change with temperature and pressure and (ii) 
Temperature dependence of bulk modulus is controlled by the Gruneisen 
parameter. 
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3. RESULTS AND DISCUSSION 
 

In the present calculation, experimental quantities as quoted in Ref. [1] are 
used to calculate the equations of state. At each temperature corresponding 
value  of  isothermal  bulk  modulus  is  evaluated  using  equation  (3).  And  
following zero-pressure condition, we obtained relative volume-thermal 
expansion. As shown in Fig. 1 intersection of p - V curve on volume axis 
suggests volume-thermal expansion, and is the indication of proper 
treatment of anharmonic effect.  
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Fig. 1 – Isothermal EOS (solid line) at  T  = 300, 1000 K (from down to up) are 
compared with first principles (broken line) as well as experimental results (triangle 
and square) due to Decremps et al. [1] at 300 K 
 

The thermal pressure as a function of temperature is shown in Fig. 2. 
Linearity confirms the assertion that the cold pressure governs the 
equations of state at finite temperatures and shift to the higher pressure 
side. The most stringent test of any high temperature methods is to account 
for thermal expansion. Relative volume (V/V0) versus temperature is 
depicted in Fig. 3. At low temperatures discrepancy is observed, and is 
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typical of any finite temperature theories, where correlation effects are 
ignored. Nevertheless, above Debye temperature (qD = 399.5 K) experimental 
trend, i.e., linear increase in V / V0 is reproduced, which confirms the 
applicability of the present scheme. 
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Fig. 2 – Thermal pressure as a function of temperature 
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Fig. 3 – Results for relative volume-thermal expansion (solid line) is compared with 
experimental results (broken line) [8] 
 
4. CONCLUSION 
 

In summary, we have calculated isothermal equations of state, relative 
volume-thermal expansion and thermal pressure at high temperature. Good 
accordance with the available first principles and experimental data is 
therefore the justification of the present scheme. From the larger expansion 
(~  15  % to  20  %)  even  at  T = 1000 K, we conclude that the ZnO is a soft 
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material. We also conclude that since the proposed scheme is unbiased to the 
bonding  nature  of  a  material,  and  it  can  be  extended  to  verities  of  the  
substances. 
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