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The questions of self-synchronization in a system of weakly nonlinear feedback oscil-

lators by the example of two self-oscillating van der Pol systems are discussed. It is 

shown that synchronization occurs in a narrow range of values of the coupling para-

meter; outside of this range the dynamics of the system is autonomous. It is shown 

that the breaking of synchronization is connected with the change in the topology of 

the attractors, which are phase incoherent. 
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1. INTRODUCTION 
 

Synchronization in oscillating systems of different nature has been actively 
studied lately [1-2]. The synchronization effect is considered in the context 
of biological and chemical systems [3, 4], electric circuits [5], radiophysics and 
information security [6], etc. For dynamic systems under synchronization one 
should understand the coincidence of characteristic frequencies of the inter-
acting subsystems. Ascertainment of a constant difference between current 
oscillation phases of the oscillators is the stronger synchronization criterion. 
In this case, frequency capture automatically follows from the phase capture 
(this phenomenon is called the phase synchronization (PS) [7]); the inverse 
statement is not true. 
 Appearance of a certain balance between phases is the consequence of the 
achievement of energy balance, which occurs due to the interaction of oscilla-
ting subsystems. We note that the overwhelming majority of works devoted 
to the synchronization problems is based on two distinctively different types 
of coupling (depending on the choice of the latter, “external” or “internal” 
synchronization is realized). In the first case, the free leading system, which 
acts as the external force, governs the guided system; as a result, the capture 
“effect” of the external force frequency by the subsystem appears [9-11]. The 
second case is realized in the grids of oscillators in the presence of “diffusive” 
coupling between the system elements [12, 13]. The authors of [14] proposed 
the fundamentally different coupling scheme, which implies the presence of 
a special controller (smoothing filter), on whose input the phase coordinates 
of oscillators come; the output signal multiplied by the feedback ratio (FR) 
is introduced into the interacting subsystems changing their time scales. This 
coupling type is more natural, widely used in technical devices (telecommu-
nication, radiolocation, etc.), and can be easily realized in many real systems 
(neural networks, ecological system, electric circuits, and so on) [15-18]. 
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 Theoretical analysis of the systems with feedback coupling proposed in 
[14] is restricted by the class of the simplest models of periodic oscillators 
like the Poincare systems. A class of more complex models is analyzed only 
within the numerical experiment, and the main attention is paid to the loca-
lization of the lower boundary of FR limits, whose excess leads to the sub-
system self-synchronization. Ii is shown in the given work that amplification 
of the feedback coupling instead of the expected full synchronization effect 
(as it is suggested in [14]) can lead to its destruction that is a new result. 
Moreover, the authors of [14] propose a theoretical outline of the analysis of 
the systems with feedback coupling, which within the proposed approximati-
ons is suitable for a wider class of weakly nonlinear oscillators (with simple 
phase-coherent topology of the attractor). Functionality of the proposed app-
roach is confirmed by the numerical experiment. 
 
2. THE MODEL 
 

The model of the dynamic system with feedback coupling was constructed as 
follows: 
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where x1,2, y1,2 are the states of the first and the second oscillators, respec-
tively; 1,2(t) are the frequencies; 1,2 are the constants. In the case when 

1,2(t)  const, system (1) is a popular model of vibration and non-linear dyna-
mics theory, i.e., the van der Pol model [19-21]. Controlling influence of (t) 
multiplied by the FR  is introduced to each subsystem in the following way: 
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where (0)1,2 are the natural oscillation frequencies of the oscillators 1 and 2, 
respectively. Evolution of (t) is described by the equation 
 

 1 2
d

a x y
dt

, (3) 

 

where a > 0 is controller parameter. Scheme of the filter operation is the 
following: two signals x1 and y2 form the periodic signal, whose spectrum is 
represented by the low-frequency (which is determined by the difference 

1 – 2) and the high-frequency (which is determined by the sum 1 + 2) 
components, where 1, 2 are the medium oscillation frequencies (typical time 
scales) of the first and the second oscillators, respectively. Cumulative signal 
is run through the filter (3), which under the condition (0)1 + (0)2 > a supp-
resses the high-frequency component. After filtration signal (t) is added to 
each subsystem changing their typical time scales. As a result, certain balance 
between time scales, 1  2, is set. 
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3. THEORETICAL ANALYSIS 
 

For diagnostics and quantitative analysis of synchronization, we introduce 
the corresponding characteristics, namely, the signal phase and amplitude. 
We have to note that there is no universal way to introduce the signal phase, 
which would give the correct results for any dynamic systems. For systems 
with simple topology of the attractor (projection of the phase trajectory on a 
certain plane of states (x, y) rotates all the time around the origin of coordi-
nates (not crossing and rounding it)) instantaneous phase  (t) can be intro-
duced as the angle in polar coordinate system on the (x, y)-plane [10] 
 

 ( ) arctg ( ) ( )t y t x t . (4) 
 

 Use of the Poincare cross-section surface in computer simulation is more 
convenient way for the phase determination; in this case phase is defined as 
 

 1
1

( ) 2 2 ,n
n n

n n

t t
t n t t t

t t
, (5) 

 

where tn is the time, which corresponds to the n-th intersection of the Poin-
care surface by the phase trajectory. For systems with simple topology of the 
attractor, formulas (4) and (5) give almost the same results: dynamics of the 
instantaneous phase for both methods will slightly differ on the time intervals 
lesser than the typical return period of the phase trajectory to the Poincare 
cross-section surface [1]. Correspondingly, the signal amplitude is determi-
ned as 
 

 2 2A x y , (6) 
 

and the signal medium frequency  is  calculated  as  the  mean  rate  of  the  
phase change 
 

 
( ) (0)
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d T
t

dt T
. (7) 

 

Regime of the phase synchronization means that signal phases 1,2(t) of the 
interacting systems become captured, i.e., 
 

 1 2( ) ( ) constt t . (8) 
 

 To develop the approximate theory of phase synchronization in the system 
(1)-(3), we will use the polar coordinates x1,2  A1,2cos 1,2, y1,2  A1,2sin 1,2. 
Rewriting the system (1)-(3) in the variables (4), (6), we have 
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Dividing the first and the second equations of the system (9) by sin 1,2 and 
cos 1,2, respectively, and subtracting the second from the first, we obtain 
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Using relation (2) and taking into account that at small 1,2 amplitude A1,2 
changes very slowly, we obtain the evolution equation for the phase of the 
first and the second oscillators. In this case evolution of the phase difference 
will be described by the equation 
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Having introduced the “slow” phase 1,2 (in accordance with relation 1,2  
 (0)1,2t + 1,2) and divided the production cos 1sin 2 of the third equation 

of the system (9) into rapidly and slowly oscillating components, we average 
equation for (t) and equation (10). Taking into account that filter (3) supp-
resses “high” frequencies and A1   A2   A   const, we finally have 
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Substituting system (11) as the second-order equation, we obtain 
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As follows, fulfillment of the equality 
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( )

a
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is the condition of phase capture that is possible if 
 

 
(0)2 (0)1

2
(0)2 (0)1

2
.

a

A
 (14) 

 

Thus, the threshold value of the FR p, whose excess leads to the regime of 
phase synchronization, is p  2a| (0)1 – (0)2|/ A 2( (0)1 + (0)2). 
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 In Fig. 1 we present the synchronization region of subsystems in the plane 
of FR parameters and difference of natural frequencies of subsystems 1 and 2. 
At small 1,2 phase trajectory of the van der Pol oscillator represents a circle, 
whose radius can be easily estimated numerically. At the chosen parameters 
the average oscillation amplitude is A1   2. Solid curve corresponds to the 
boundary of the synchronization regime in accordance with the performed 
theoretical analysis. Presence of the synchronous regime was determined by 
fulfillment of the condition of the phase capture (14). As seen from Fig. 1, 
in the case of small frequency mismatch, synchronous regime is realized at 
sufficiently small values of the FR. With the linear increase in the mismatch, 
phase synchronization is possible under the condition of logarithmic increase 
in the FR. 
 

 

Fig. 1 – Dependence of the critical value of the FR on the difference of natural frequen-
cies of the interacting subsystems (0)2 – (0)1 at a  0,5. Region of phase synchroni-
zation calculated within the theoretical analysis is above the solid curve. Synchroniza-
tion region calculated based on the numerical experiment is between the curves marked 
by the squares 
 
4. NUMERICAL ANALYSIS 
 

Computer simulation of the synchronization processes in the represented sys-
tem was performed based on the direct numerical solution of the equations 
(1)-(3) by the Euler-Cromer method with the integration step h  0,001. Initial 
conditions were chosen randomly, transient process of the length T  200 was 
omitted. Controlling influence was switched on in the moment t  200 after 
trajectory running on the limit cycle. 
 Critical values of the FR, at which self-synchronization is possible for dif-
ferent combinations of the natural frequencies of subsystems, were calcula-
ted within the numerical analysis. Generalized results of the performed expe-
riments were superimposed on the results of the theoretical calculations (see 
Fig. 1). As seen from the figure, calculation results of the lower boundary 
of the interval of FR critical values practically coincide that confirms the 
correctness of the used approximations and proposed scheme in whole. As 
computer analysis showed, further increase in the FR leads to the reduction 
of the transient process time during transition to the synchronous behavior 
after switching on of the controlling influence. At large values of the FR, the 
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Fig. 2 – Phase portraits of the oscillators (a1-d1), time evolution of the phases (a2-d2), 
and dynamics of their difference (a3-d3) on the interval t  [200, 400] at different 
values of the FR. Pictures a1-a3 correspond to the case   0 (non-interacting oscilla-
tors); b1-b3 –   0,06; c1-c3 –   0,075; d1-d3 –   0,32. Values of other parameters: 

(0)1  2, (0)2  1, 1  0,2, 2  0,5, a  0,5.  Curves, which correspond to the first 
and the second oscillators, are marked by the numerals 1 and 2, respectively 
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unexpected destruction effect of synchronous dynamics and transition to 
chaos is observed. To identify the reasons of synchronization destruction, we 
have studied the dynamics of both oscillators at different FR in detail. 
 In Fig. 2 we represent the phase portraits of the interacting subsystems; 
evolution of the phases, and dynamics of their difference at different FR. 
Due to the absence of interaction between oscillators (Fig. 2a1-2a3), a limit 
cycle is the sole attractor on the phase plane. When switching on the control-
ling influence, phase trajectories are “blurred” in space: attractor of each of 
the interacting subsystem becomes chaotic (transition to the chaotic dynamics 
is determined by the Lyapunov exponents). With the increase in the FR up 
to 0,0075, phase synchronization occurs in the system that is expressed in 
the attainment of the steady-state level by the phase difference curve (see 
Fig. 2c3). Obtained critical value of the FR agrees well with the results of the 
theoretical analysis: in accordance with expression (14) the threshold value 
of the FR at the given parameters of subsystems is about p  0,083. In the 
range of   [0,075; 0,3] oscillations of the subsystems remain synchronized. 
With the increase in  (  > 0,3), instead of the expected regime of full synch-
ronization, the inverse effect is observed: synchronization is destroyed (see 
Fig. 2d2-2d3), attractors of the subsystems (as it is shown in Fig. 2d1) become 
phase incoherent (topology becomes more complex, phase trajectory cuts the 
x-axis on the left of the origin of coordinates). Thus, in this case destruction 
of the regime of full synchronization is equivalent to the destruction of the 
attractor phase coherence. Since approximations of the foregoing theoretical 
analysis concern only the case of the presence of the phase coherent attractor, 
condition (14) does not take into account change in the attractor topology 
and, correspondingly, presence of the upper critical point in the range of FR, 
whose excess leads to the synchronization destruction. 
 
5. CONCLUSIONS 
 

In the present work, the features of realization of the self-synchronization 
regime in a system of similar non-linear feedback oscillators are investigated 
within the theoretical analysis and computer experiment. It is shown that 
with the increase in the feedback ratio in the narrow domain of the given 
parameter, the reverse transition similar to the reverse phase transitions in 
physical systems [22] takes place: gradual increase in the coupling parameter 
leads, at first, to the appearance of phase synchronization, and then to its 
destruction. The process of synchronization destruction is connected with 
the change in the topology of the subsystem attractors, which become phase 
incoherent. 
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