Ж. нано- електрон. фіз./ J. Nano- Electron. Phys. 2010. – Т.2, №2. – С. 25-34

PACS numbers: 29.25.Ni, 52.50.Dg, 52.70.Gw, 52.80.Pi

ЭФФЕКТИВНОСТЬ ВВОДА МОЩНОСТИ В ИНДУКТИВНЫЙ ВЧ-ИСТОЧНИК ИОНОВ

В.И. Возный

Институт прикладной физики НАН Украины, ул. Петропавловская, 58, 40030, Сумы, Украина E-mail: <u>vozny@ipflab.sumy.ua</u>

Исследовался высокочастотный индуктивный ионный источник без магнитного поля, работающий на частоте 27,12 МГц. Диаметр разрядной камеры источника равен 3 см, длина – 8 см. Измерялись внешние электрические параметры источника, такие как антенный ток и напряжение на антенне, в диапазоне ВЧ-мощности 10 ÷ 400 Вт и давления рабочего газа (аргон) 0,1 ÷ 1 Па. Используя трансформаторную модель индуктивного ВЧ-разряда, определена эффективность ввода ВЧ-мощности в плазму ионного источника. При давлении аргона 0,5 Па и подводимой ВЧ-мощности в интервале 50 ÷ 400 Вт в плазму вводится около 75 % мощности.

Ключевые слова: ВЧ-ИСТОЧНИК ИОНОВ, ИОННЫЙ ПУЧОК, ПЛАЗМА, ПЛОТНОСТЬ ТОКА.

(Получено 19.05.2010, в отредактированной форме – 06.07.2010)

1. ВВЕДЕНИЕ

Одним из основных инструментом для проведения анализа структуры различных материалов являются ускорительные установки, в которых используются фокусируемые ионные пучки (ФИП). ФИП-установки находят широкое применение в материаловедении, литографии, микро- и нанотехнологиях. В качестве источников ионов в ФИП-установках обычно используются ионные высокочастотные (ВЧ) источники, обладающие рядом достоинств: значительный срок службы, простота конструкции, большой ионный ток (1 ÷ 100 мкА), отсутствие накаливаемого катода и чистота образуемой плазмы. Приведённая яркость ионных источников ФИП-установок равна $1 \div 30$ А·м⁻² рад⁻² эВ⁻¹ [1], что обеспечивает их пространственное разрешение на уровне 1 мкм [2]. Быстрое развитие наномикронных технологий требует повышения разрешающей способности ФИП-установок и уменьшения диаметра ионного пучка до величины менее 100 нм. Расчеты показывают, что для повышения пространственного разрешения установки в 10 раз, яркость ионного источника должна быть увеличена на $2 \div 5$ порядков [2]. Очевидно, что повышение яркости ВЧисточников возможно лишь на основе понимания физических процессов, протекающих в плазме ВЧ-источника, и знания таких параметров источника, как плотность плазмы, частота электронных соударений, эффективность ввода ВЧ-мощности и др.

Известно, что яркость ионного ВЧ-источника пропорциональна плотности плазмы, образующейся в разряде источника [3]. Расчеты [4], выполненные на основе глобальной теории плазменного разряда [5, 6] и

25

подтвержденные экспериментально, показывают, что плотность плазмы цилиндрического индуктивного ВЧ-источника прямо пропорциональна ВЧмощности, поглощаемой разрядом. Таким образом, определение эффективности ввода ВЧ-мощности в разряд источника, а значит и определение поглощаемой разрядом мощности, имеет очень большое значение. Определение этого параметра важно также с точки зрения функционирования источника, так как малая эффективность ввода мощности ведет к плохому возбуждению разряда, получению низкой плотности плазмы и чрезмерному нагреву антенны и элементов ВЧ-настройки источника.

В данной работе представлены результаты исследования индуктивного ВЧ-источника ионов, работающего на частоте 27,12 МГц в отсутствие магнитного поля. В работе приведены измерения антенного тока и напряжения на антенне ионного источника в зависимости от мощности генератора и давления газа в разрядной камере. Используя трансформаторную модель индуктивного ВЧ-разряда [7, 8], определены плазменные параметры ВЧ-разряда и рассчитан коэффициент эффективности ввода ВЧмощности в плазму источника.

2. ТРАНСФОРМАТОРНАЯ МОДЕЛЬ ИНДУКТИВНОГО ВЧ-РАЗРЯДА

В работах [7, 8] представлена методика, позволяющая определять внутренние интегральные плазменные параметры разряда, измеряя внешние параметры ВЧ-цепи питания разряда, такие как ток в антенне и напряжение на ней. Метод, называемый трансформаторной моделью ВЧразряда, основан на том, что индукционный разряд можно представить в виде воздушного трансформатора, в котором первичной обмоткой служит индуктивная антенна, а вторичной обмоткой является сам ВЧ-разряд. Магнитное поле, образуемое токами, текущими в первичной обмотке (антенне), взаимодействует с токами вторичного витка (плазменным током). Следует подчеркнуть, что такая модель разряда применима только для индуктивной фазы разряда (H-моды).

Эквивалентная схема трансформаторной модели представлена на рис.1 а. Второй закон Кирхгофа в комплексной форме для действующих значений тока и напряжения для цепи антенны и цепи плазмы выглядит как: $\dot{V}_1 = (R_0 + j\omega L_0)\dot{I}_1 - j\omega M\dot{I}_2$ и $0 = (R_2 + j\omega (L_2 + L_e))\dot{I}_2 - j\omega M\dot{I}_1$, где I_1 и

V₁ – ток в антенне и напряжение на ней, I₂ и R₂ – плазменный ток и активное сопротивление плазменного цилиндра.

Рис. 1 – Эквивалентная схема трансформаторной модели индуктивного ВУразряда (a) и ее последовательная эквивалентная схема (б)

Первичная обмотка трансформатора (антенна) содержит N витков, обладает индуктивностью L_0 и активным сопротивлением R_0 . Вторичная обмотка трансформатора (кольцевой разряд) имеет индуктивность $L = L_2 + L_e$ и активное сопротивление R_2 . Индуктивность разряда состоит из двух частей: геометрической индуктивности L_2 , вызванной протеканием разрядного тока, и инерционной индуктивности L_e , связанной с инерцией электронов. Инерционная индуктивность L_e следует из комплексной природы проводимости плазмы [9]: $\sigma = e^2 n_e / m_e (v_{eff} + j\omega)$, где e – заряд электрона, m_e – масса электрона, v_{eff} – эффективная частота электронных столкновений и ω – угловая частота генератора.

Мнимая часть проводимости плазмы определяет индуктивность инерции электронов L_e , которая может быть записана как $L_e = R_2/v_{eff}$ [7]. Магнитная индуктивность L_2 связана с индуктивностью L_0 первичной обмотки посредством взаимной индуктивности $M: M = k_L(L_0L_2)^{1/2}$, где $k_L -$ коэффициент связи между плазмой и антенной. Так как в данной модели плазма представляет собой один замкнутый виток с током I_2 , который окружен N витками антенны, то коэффициент связи равен: $k_L = (a/b)^2$, где a — радиус плазменного цилиндра, b — радиус витка антенны. При этом магнитную индуктивность разряда L_2 можно выразить через индуктивность L_0 антенны: $L_2 = k_L L_0/N^2$.

Эквивалентная схема ВЧ-разряда (рис. 1 а) может быть преобразована в последовательную схему (рис. 1 б). При этом появление плазменной нагрузки рассматривается как добавление эквивалентного активного сопротивления плазмы ρ и эквивалентного индуктивного сопротивления плазмы χ [8]: $\rho = \omega^2 M^2 R_2 / z_2^2$, $\chi = \omega^2 M^2 (\omega L_2 + \omega L_e) / z_2^2$, где $z_2^2 = R_2^2 + (\omega L_2 + \omega L_e)^2$.

Комплексное сопротивление Z₁ эквивалентной последовательной схемы и модуль комплексного сопротивления z₁ соответственно равны:

$$Z_{1} = (R_{0} + \rho) + j\omega(L_{0} - \chi/\omega) \quad \text{if} \quad z_{1} = |Z_{1}| = \left[(R_{0} + \rho)^{2} + (\omega L_{0} - \chi)^{2}\right]^{1/2}$$

Действующие значения ВЧ-мощности P, напряжения на антенне V_1 и тока I_1 в антенне связаны соотношениями: $V_1 = I_1 z_1$ и $P = V_1 I_1 \cos \varphi$, где φ – угол сдвига фазы между током в антенне и напряжением на ней.

Активная мощность ВЧ-генератора распределяется между мощностью, выделяемой в антенне P_{ant} , и мощностью, поглощаемой плазмой P_{abs} [6, 8]: $P = P_{ant} + P_{abs} = I_1^2 (R_0 + \rho) = R_0 I_1^2 + \rho I_1^2$.

Активное сопротивление антенны R_0 находят, измеряя ток в антенне I_1 и подводимую ВЧ-мощность P в отсутствие плазмы: $R_0 = P/I_1^2$. Индуктивное сопротивление антенны ωL_0 определяют, измеряя ток в антенне I_1 и напряжение V_1 на антенне в отсутствие плазмы. Поскольку $\omega L_0 >> R_0$, то $\omega L_0 = V_1/I_1$. Эквивалентное активное сопротивление плазмы равно: $\rho = P/I_1^2 - R_0$,

Эквивалентное активное сопротивление плазмы равно: $ho = P/I_1^2 - R_0$, эквивалентное индуктивное сопротивление плазмы χ находят как: $\chi = \omega L_0 - (V_1^2/I_1^2 - P^2/I_1^4)^{1/2}$.

Коэффициент эффективности η ввода ВЧ-мощности определяется как [6]:

$$\eta = P_{abs}/P = \rho/(\rho + R_0) = 1 - R_0 I_1^2/P.$$
(1)

3. ЭКСПЕРИМЕНТАЛЬНАЯ АППАРАТУРА

Общая схема ВЧ-источника ионов и описание экспериментальной установки для измерения параметров источника приводятся в работах [4, 10]. Индуктивный источник ионов представляет собой илиндрическую кварцевую разрядную камеру с наружным диаметром 30 мм и длиной 80 мм. Поверх разрядной камеры навита винтовая антенна (4 витка медной трубки диаметром 4 мм), к которой подводится ВЧ-напряжение.

ВЧ-система состоит из задающего генератора (27,12 МГц, 40 Вт), усилителя мощности «ACOM-1000»(700 Вт) и системы согласования, которая состоит из нагрузочного и резонансного переменных конденсаторов. Схема согласования необходима для согласования выходного сопротивления усилителя 50 Ом с малым 1 ÷ 4 Ом активным сопротивлением антенны. Измеритель прямой и отраженной мощности (рефлектометр «Ronde&Schwarz») включен между усилителем мощности и схемой согласования. Изменяя емкости конденсаторов системы согласования, добиваются положения, когда уровень отраженной (реактивной) мощности близок к нулю. При этом величина прямой мощности является мощностью, которая подводится к разряду ионного источника.

Вакуумная камера установки откачивается турбомолекулярным насосом «Leybold-350», обеспечивающим давление на уровне 5·10⁻⁴ Па. Для напуска рабочего газа в ионный источник используется система напуска газа «CHA-2».

Измерения тока в антенне I_1 проводились с помощью амплитудного ВЧ-амперметра (рис. 2,а) с интегрирующим поясом Роговского (п. Р.) [11, 12]. Пояс Роговского (или трансформатор тока) представляет собой тороидальную катушку индуктивности L_1 , по оси которой проходит провод с измеряемым током I_1 и частотой ω . Индуктивность шунтируется сопротивлением R_1 , при этом L_1 , R_1 и ω должны удовлетворять условию $R_1 << \omega L_1$. На шунте R_1 выделяется напряжение U, связанное с измеряемым током I_1 соотношением $U = (R_1/n)I_1$, где n – число витков

Рис. 2 – Схема амплитудного ВЧ-амперметра (а) и ВЧ-вольтметра (б)

пояса. Чувствительность п. Р., равная $K = R_1/n$, может быть увеличена при намотке индуктивности L_1 на кольцевой ферритовый сердечник, что позволяет уменьшить число витков *n*. В данном п. Р. применялось ферритовое кольцо T225-6 «Micrometals» с размерами 57 × 35,6 × 14 мм и магнитной проницаемостью 10. На кольцо намотаны 100 витков провода ПЭЛШО-0,6. Намотка производилась в один ряд и имела обратный виток. Для уменьшения емкостной связи между антенным проводом, проходящим по оси кольца, и индуктивностью L_1 , п. Р. помещался в кольцевой медный экран, соединенный с общим проводом заземления. Для осуществления магнитной связи на внутренней поверхности кольцевого экрана сделан разрез.

При калибровке ВЧ-амперметра к эквиваленту активной нагрузки 50 Ом (80 Вт) подводилась ВЧ-мощность частотой 27,12 МГц. Провод подключения эквивалента нагрузки проходил вдоль оси п.Р. Подавая на нагрузку определенную мощность и измеряя напряжение на ней (вольтметр В7-17), определялся ток, текущий по оси п.Р. Сопротивление R_3 подбиралось такой величины, чтобы измеряемому току 10 А соответствовало максимальное значение тока (100 мкА) стрелочного прибора. Абсолютная погрешность измерений тока в антенне равна ± 0,2 А.

Измерение напряжения на антенне осуществлялось с помощью ВЧ-вольтметра (рис. 2 б) с применением ВЧ-трансформатора [12]. Трансформатор выполнен на кольце T225-6 «Місготеtals» с внешним диаметром 57 мм и магнитной проницаемостью 10. На противоположных сторонах кольца намотаны две обмотки, из которых первичная содержит 40 витков многожильного провода во фторопластовой изоляции, а вторичная – 10 витков такого же провода. При калибровке амплитудного ВЧ-вольтметра использовался вольтметр В7-17. При этом величина сопротивления R_3 устанавливалась такой, чтобы измеряемому напряжению в 1000 В соответствовал максимальный ток (100 мкА) измерительного прибора. При этом абсолютная погрешность измерений ВЧ-напряжения составляла ± 10 В.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Внешние электрические параметры индуктивного ВЧ-источника (антенный ток I_1 и напряжение на антенне V_1) измерялись в диапазоне ВЧ-мощности $P = 1 \div 400$ Вт. Давление рабочего газа (аргон) в разрядной камере источника изменялось в пределах $0,1 \div 1$ Па. Винтовая антенна источника содержит 4 витка (N = 4), имеет радиус b = 1,8 см и длину l = 3,0 см. В расчетах радиус a и длина l_2 плазменного цилиндра принимались равными a = 1,3 см и $l_2 = 7$ см.

Активное сопротивление R_0 антенны и индуктивное сопротивление ωL_0 антенны определялись в отсутствие плазмы, когда ионный источник был откачан до давления ~ 10^{-4} Па. При таком давлении плазма в источнике не образовывалась, хотя ВЧ-мощность подводилась к антенне. Активное сопротивление антенны оказалось равным $R_0 = 1,2 \pm 0,1$ Ом, индуктивное сопротивление антенны равно $\omega L_0 = 88 \pm 4$ Ом.

Рис. 3 – Ток в антенне I_1 (а) и напряжение V_1 на антенне (б) в зависимости от ВЧ мощности Р при разном давлении аргона

При определенном давлении в источнике загорался ВЧ-разряд и измерялся ток I_1 и напряжение V_1 на антенне в зависимости от подводимой к разряду ВЧ-мощности *P*. В реальном ВЧ-разряде наблюдаются две различные моды разряда: при малой мощности преобладает емкостная связь (Е-разряд), а при высокой мощности доминирует индуктивная связь (Н-разряд) с высокой плотностью плазмы. Измерения тока I_1 и напряжения V_1 проводились только для индуктивной фазы разряда.

На рис. 3 а и 3 б показано поведение тока I_1 и напряжения V_1 в зависимости от ВЧ-мощности при различном давлении рабочего газа. Видно, что ток в антенне I_1 и напряжение V_1 увеличиваются с ростом мощности. При 380 Вт мощности ток в антенне достигает величины $I_1 = 10 \pm 0,2$ А при 0,1 Па давления. При этом напряжение на антенне равно $V_1 = 420 \pm 10$ В. Угол сдвига фазы между током I_1 и напряжением V_1 равен $\varphi = 85 \div 86^\circ$ в индуктивной фазе разряда ($P = 50 \div 400$ Вт).

На рис. 4 а представлены зависимости I_1 и V_1 от давления аргона в разрядной камере источника при 200 Вт мощности. Из графика видно, что при постоянной мощности с увеличением давления газа ток в антенне I_1 уменьшается, а напряжение V_1 на антенне увеличивается.

Рис. 4 – Ток в антенне I_1 и напряжение на антенне V_1 в зависимости от давления аргона при мощности P = 200 Bm (а). Эквивалентное активное сопротивление плазмы ρ в зависимости от ВЧ-мощности при разном давлении аргона (б)

Зависимость эквивалентного активного сопротивления плазмы ρ от ВЧ-мощности Р при различном давлении газа показано на рис. 4 б. Видно увеличение эквивалентного сопротивления плазмы резкое при повышении ВЧ-мощности от нуля до 50 ÷ 70 Вт, когда происходит переход от емкостной фазы разряда к индуктивной фазе. В индуктивной фазе эквивалентное сопротивление плазмы ho медленно растет с увеличением ВЧ-мощности и при большом давлении почти не изменяется с ростом мощности. При фиксированной мощности эквивалентное сопротивление ρ возрастает с увеличением давления. Это свидетельствует о том, что мощность P_{abs} , поглощаемая разрядом, увеличивается с ростом ВЧ-мощности Р. На рис. 4 б показана среднеквадратичная абсолютная погрешность ρ , определенная как погрешность косвенных измерений (для давления 0,5 Па).

Изменение эквивалентного индуктивного сопротивления плазмы χ при увеличении ВЧ-мощности показаны на рис. 5 а для давления газа 0,1 и 0,5 Па. Видно, что индуктивное сопротивление плазмы χ увеличивается с ростом ВЧ-мощности.

Модуль комплексного сопротивления z_1 показан на рис. 5 б в зависимости от ВЧ-мощности для давления 0,1 и 0,5 Па. Модуль комплексного сопротивления z_1 уменьшается с ростом ВЧ-мощности и возрастает с увеличением давления. Так как при увеличении мощности Pэквивалентное сопротивление ρ возрастает, то наблюдаемое уменьшение модуля сопротивления z_1 при увеличении мощности вызвано уменьшением полного индуктивного сопротивления ($\omega L_0 - \chi$) (рис. 5 а). Величина χ имеет обратный знак, чем ωL_0 , и увеличение χ с ростом ВЧ-мощности ведет к уменьшению модуля комплексного сопротивления z_1 . Этот факт отражает диамагнитный эффект плазмы, которая индуктивно связана с ВЧ-антенной [8]. Образующийся плазменный ток частично нейтрализует переменный магнитный поток, создаваемый током в антенне, поэтому плазменный ток течет в направлении, обратном току в антенне.

Рис. 5 – Эквивалентное индуктивное сопротивление плазмы χ (a) и модуль комплексного сопротивления z_1 (б) в зависимости от ВЧ-мощности при различном давлении аргона

Рис. 6 – Коэффициент эффективности η в зависимости от подводимой мощности Р при различном давлении аргона (а). Плотность тока j_i ионов аргона в зависимости от давления при поглощенной мощности $P_{abs} = 100$ Bm [4] (б)

Коэффициент эффективности η ввода мощности в плазму определялся из соотношения (1). Зависимость коэффициента η от подводимой к разряду ВЧ-мощности *P* показана на рис. 6 а при различном давлении аргона.

Видно резкое увеличение коэффициента эффективности в начальной фазе разряда, когда в разряде происходит переход из емкостной фазы в индуктивную. При дальнейшем увеличении ВЧ-мощности коэффициент η , достигнув своего максимального значения, практически не изменяется. С ростом давления коэффициент эффективности η возрастает. Средние значения η равны 0,65, 0,75 и 0,82 для давлений 0,1 Па, 0,5 Па и 1 Па соответственно. Среднеквадратичная относительная погрешность η , определенная как погрешность косвенных измерений, составляет величину $\pm 10\%$.

Поскольку с увеличением давления коэффициент эффективности η возрастает, то повысить η до значения 0,9 и более, казалось бы, можно путем увеличения давления в разрядной камере источника. Однако в разрабатываемых ВЧ-источников ионов, получения случае для максимальной плотности ионного тока, этот способ не может быть применим. В работе [4] приводится величина плотности тока j_i ионов аргона, которую можно извлечь из ВЧ-источника диаметром 3 см и длиной 7 см. Величина j_i рассчитана на основе глобальной модели ВЧразряда [5], в соответствии с которой плотность тока j_i определяется плотностью ионов n_s на границе плазма-слой и бомовской скоростью ионов u_B : $j_i = en_s u_B$. На рис. 6 б показана плотность тока ионов аргона j_i в зависимости от давления газа при поглощенной мощности P_{abs} = 100 Вт [4]. Плотность тока достигает максимального значения 20 мA/см² при давлении 0,5 Па и уменьшается с повышением давления. Таким образом, видно, что увеличение давления в камере источника, хотя и повышает эффективность ввода мощности в разряд, приводит к уменьшению плотности извлекаемого тока. Из рис. 6 а следует, что при давлении 0,5 Па коэффициент эффективности равен 0,75 ± 0,08. Чтобы повысить эффективность ввода ВЧ-мощности до уровня 0,9, необходимо уменьшать активное сопротивление антенны и элементов схемы согласования, покрывая их тонким слоем серебра (повышать добротность ВЧ-контура).

5. ЗАКЛЮЧЕНИЕ

Применение трансформаторной модели индуктивного ВЧ-разряда дает прямой метод определения мощности, непосредственно поглощаемой плазмой ВЧ-источника ионов. Проведены измерения антенного тока и напряжения на антенне ВЧ-источника и установлено, что при оптимальном давлении газа (аргон) 0,5 Па непосредственно в плазму источника вводится около $75 \pm 10\%$ мощности. Остальная часть мощности рассеивается в виде тепловых потерь на ВЧ-антенне и элементах схемы согласования. Для повышения коэффициента эффективности ввода мощности, необходимо повышать добротность ВЧ-контура ионного источника.

POWER TRANSFER EFFICIENCY IN THE INDUCTIVE RF ION SOURCE

V. Voznyi

Institute of Applied Physics NAS of Ukraine, 58, Petropavlivska, 40030, Sumy, Ukraine E-mail: <u>vozny@ipflab.sumy.ua</u>

A radio-frequency inductive ion source without magnetic field was analyzed at driving frequency of 27,12 MHz. Diameter of the source discharge chamber is 3 cm, length is 8 cm. External electrical parameters of a source such as the coil current and the coil voltage were measured over a power range of $10 \div 400$ W and gas (argon) pressures ranging from 0,1 to 1 Pa. The transformer model of an RF inductive discharge was applied to calculate the power transfer efficiency to plasma of the ion source. The power absorbed by plasma is determined to be 75 % in the generator power range $50 \div 400$ W at the gas pressure of 0,5 Pa.

Keywords: RF ION SOURCE, ION BEAM, PLASMA, CURRENT DENSITY.

ЕФЕКТИВНІСТЬ ВВЕДЕННЯ ПОТУЖНОСТІ В ІНДУКТИВНЕ ВЧ ДЖЕРЕЛО ІОНІВ

В.І. Возний

Інститут прикладної фізики НАН України, Вул. Петропавлівска, 58, 40030, Суми, Україна E-mail: <u>voznv@ipflab.sumv.ua</u>

Досліджувалося високочастотне індуктивне іонне джерело без магнітного поля, що працює на частоті 27,12 МГц. Діаметр розрядної камери джерела дорівнює 3 см, довжина – 8 см. Вимірювалися зовнішні електричні параметри джерела, такі як антенний струм і напруга на антені, в діапазоні ВЧ-потужності $10 \div 400$ Вт і тиску газу (аргон) $0,1 \div 1$ Па. Використовуючи трансформаторну модель індуктивного ВЧ-розряду, визначено ефективність введення ВЧпотужності в плазму іонного джерела. При тиску аргону 0,5 Па і ВЧпотужності в інтервалі $50 \div 400$ Вт в плазму вводиться близько 75 % потужності.

Ключові слова: ВЧ-ДЖЕРЕЛО ІОНІВ, ІОННИЙ ПУЧОК, ПЛАЗМА, ГУСТИНА СТРУМУ.

СПИСОК ЛИТЕРАТУРЫ

- 1. R. Szymanski, D.N. Jamieson, Nucl. Instrum. Meth. B 130, 80 (1997).
- 2. D.N. Jamieson, 7th International Conference on Nuclear Microprobe Technology and Applications (ICNMTA-2000), art. no. MF-01 (2000).
- 3. V.I. Miroshnichenko, S.M. Mordyk, V.V. Olshansky, K.N. Stepanov, V.E. Storizhko, B. Sulkio-Cleff, V. Voznyy, Nucl. Instrum. Meth. B 201, 630 (2003).
- 4. V.I. Voznyy, V.I. Miroshnichenko, S.M. Mordyk, Problems of Atomic Science and Technology. Series: Plasma Physics 10 No1, 209 (2005).
- 5. M.A. Lieberman, A.J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (New York: Wiley: 1994).
- 6. J.T. Gudmundsson, M.A. Lieberman, Plasma Sources Sci. T. 6, 540 (1997).
- 7. R.B. Piejak, V.A. Godyak, B.M. Alexandrovich, *Plasma Sources Sci. T.* 1, 179 (1992).
- 8. V.A. Godyak, R.B. Piejak, B.M. Alexandrovich, Plasma Sources Sci. T. 3, 169 (1994).
- 9. G.G. Lister, Y.-M. Li, V.A. Godyak, J. Appl. Phys. 79, 8993 (1996).
- 10. В.И. Возный, В.И. Мирошниченко, С.Н. Мордик, В.Е. Сторижко, Д.П. Шульга, Б. Сулкио-Клефф, ВАНТ. Серия: Плазменная электроника и новые методы ускорения №4, 284 (2003). 11. Ч. Уортон, Диагностика плазмы (Москва: Мир: 1967).
- 12. I.M. El-Fayoumi, I.R. Jones, Plasma Sources Sci. T. 6, 201 (1997).