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The theoretical and experimental studies of electrophysical properties (conductivity 
and temperature coefficient of resistance) of metal films with a polycrystalline 

structure are performed in this paper. It is shown, that the numerical values of these 
kinetic coefficients in thin conductors are essentially different from the corresponding 

transport coefficients in thick samples. The reason of this difference lies in the 
simultaneous realization in thin polycrystalline films both of the internal size effects 

(relaxation of charge carries at the grain boundaries) and the external size effects 
(electron scattering at the outer boundaries of the sample). As a result, the kinetic 

coefficients essentially depend on the internal structure, thickness, and degrees of 
surface roughness of the conductor. The size effects considered in the review are used 

to analyze the transport effects in polycrystalline films, and the given asymptotic 
expressions are used to calculate the electron transport parameters in Al and Ni 

mono-block films. Shown, that agreement between the experimental and theoretical 
values of conductivity and temperature coefficient of resistance in each specific case 

is achieved by using the grain-boundary scattering coefficient as the adjusted 
parameter. The value of this coefficient is: 0,37-0,46 (Ni films) and 0,09-0,3 (Al 

films) while calculating the conductivity, and 0,37-0,40 (Ni films) and 0,15-0,36 (Al 
films) while calculating the temperature coefficient of resistance. 
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1. INTRODUCTION 
 

Constant interest in the study of electron transport in thin metal films is 
conditioned by both their wide use as an elemental basis of modern micro-
electronics and measuring techniques and the availability of detailed infor-
mation about the relaxation of charge carries at the outer and inner boun-
daries of the conductor [1-3]. The main peculiarity of the electron transport 
in polycrystalline films in comparison with bulk samples is the interaction of 
electrons with outer boundaries (external size effect) and inner boundaries 
(internal size effect) that leads to both the size dependence of the transport 
coefficients and their dependence on the thin film structure (average grain 
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size, type of interaction between the charge carries and the grain boundaries 
(GB), etc.). 
 A sufficiently correct model of electrical conductivity of polycrystalline 
film was proposed for the first time by Mayadas and Shatzkes (the MS model) 
[4, 5]. These authors proposed the model (see Fig. 1) with the average grain 
size L in the conductor surface and with the grain boundaries perpendicular 
to the outer surfaces of the sample. Considering that the different electron 
scattering mechanisms (isotropic phonon and point defect scattering; inter-
grain boundary and outer surface scattering) are independent, Mayadas and 
Shatzkes [5] not only obtained the general analytical expression for the con-
ductivity  of polycrystalline film, but performed its approbation using the 
experimental results of other authors. 
 

 
 

Fig. 1 – Model of thin polycrystalline film where the possible motion path of a charge 
carrier is shown by the broken line: d is the film thickness; L is the average grain size 
in the sample surface; qj (j  1, 2) is the probability of specular reflection of charge 
carriers by j-th outer boundary of the conductor; R is the probability of the diffusion 
scattering at the inter-grain boundaries; E is the electrostatic field strength 
 

 Taking the MS model as the basic one, different phenomenological models 
of the electrophysical properties of polycrystalline film samples were pro-
posed in further theoretical investigations. Thus, in particular, the electrical 
conductivity of the conductor with mono-block crystallites of the cylindrical 
shape with the same diameter, generatrices of which are perpendicular to 
the outer boundaries, is analyzed in [6-8]. The authors of [9-11] have proposed 
two-dimensional and the authors of [12, 13] have proposed three-dimensional 
(see detailed information in the monograph [14]) models of the electrical 
conductivity of thin polycrystalline film under the assumption that the grain 
size is the same in each of three mutually perpendicular directions, and the 
interaction of the charge carriers with the grain boundaries is characterized 
by only one parameter, which determines the probability of the electron 
passing through the inter-grain boundary. In the sequel, the generalization 
of three-dimensional model in the case when crystallites have a non-cubic 
shape and are modeled by three sets of surfaces, which are perpendicular to 
the three coordinate axes, was performed in [15, 16]. But proposed in [11] 
numerical analysis showed that the probability values of specular reflection 
of charge carriers from outer surfaces of the conductor and probabilities of 
the diffusion electron scattering at the GB, obtained within two- and three-
dimensional models, almost coincide with the corresponding results for one-
dimensional model in the analysis of the experimental results. This fact is 
conditioned by the following: intergrain boundaries, which are parallel to the 
electric current density vector influence weakly the electron flow and, corres-
pondingly, do not change the value of the transport coefficients. Therefore 
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analyzing the conductivity (resistivity), temperature coefficient of resistance 
(TCR) and tensosensitivity coefficients (TC) of thin polycrystalline film one 
can use one-dimensional MS model with sufficient accuracy. We have to note 
that in the case of ultra-thin films the scattering mechanism of the charge 
carriers on surface inhomogeneities becomes the dominant one [17, 18]. 
 Mayadas and Shatzkes theory agrees satisfactorily with the experimental 
investigations of the kinetic properties in one- and multilayer films, it is 
widely used for the analysis of the electron transport in thin polycrystalline 
conductors of nanometer scales, and allows to determine the electron trans-
port parameters (see, for example, [19-29]) using the experimental data 
about the electrophysical properties of thin polycrystalline films. 
 The aim of the present work is theoretical and experimental investigation 
of the kinetic coefficients, which characterize the electron transport in poly-
crystalline films. 
 
2. CONDUCTIVITY 
 

2.1 General analytical and asymptotic expressions 
 

Conductivity of thin polycrystalline film, the outer boundaries of which scatter 
charge carries in different ways, can be written as follows [5]: 
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where  is the electrical conductivity of polycrystalline film of the thickness 
d; 0 is the conductivity of infinite (d  ) metal monocrystalline sample; l is 
the mean free path of the electrons; qj (j  1, 2) is the probability of specular 
reflection of charge carriers by j-th outer boundary of the conductor with con-
servation of the energy and the tangential component of quasi-impulse. 
 Function f( ) in correlation (1) defines the conductivity of bulk (d  ) 
polycrystalline sample and is equal to [4, 5] 
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In is not difficult to see from formulas (1) and (3) that in the MS model the 
influence of the sample polycrystallinity is taking into account using only the 
grain-boundary parameter   lR/[L(1 – R)] (L is the average grain width in 
the film surface; R is the probability of the diffusion electron scattering at 
the inter-grain boundaries), which determines the contribution of grain boun-
daries to the total resistance of thin film. Formula (1) for the conductivity 
of polycrystalline film obtained by Mayadas and Shatzkes transforms to the 
Lucas formula [30] (under condition that q1  q2) or to the Fuchs formula 
[31] (if the equality q1  q2  q holds) at   , i.e., either when the grain 
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boundaries are absolutely “transparent” for charge carriers (R  ) or film 
is the “single-crystalline” one (L  ). 
 Analytical dimensional dependence of the conductivity of polycrystalline 
film (1)  is  rather complicated for  its  direct  comparison with the results  of  
the experimental investigations. Therefore the authors of many theoretical 
papers (see the review monograph [14]) have proposed approximate relations 
of the Mayadas-Shatzkes formula, which contain the tabulated functions and 
have severe restrictions on the variation range of the parameter. General 
asymptotic expressions of formula (1) without tabulated functions were 
proposed in [32]. 
 If the sample is rather thick, i.e., inequality k >> 1 holds, at the arbitrary 
values of the grain-boundary parameter  and reflectivity parameters qj the 
conductivity of polycrystalline film can be written as [32]: 
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It follows from (4) that the decrease in the electrical conductivity of thick 
polycrystalline conductor at d >> l is negligible in comparison with the 
conductivity of bulk sample. This is connected with the fact that in this case 
the  electrical  current  is  formed  by  almost  all  charge  carriers  nearby  the  
Fermi surface. If there is a strong correlation between the incident and 
reflected from the surface electron (qj  1), conductivities of film and bulk 
samples coincide. Absence of the mentioned correlation between the incident 
and reflected electron (qj  0) leads to the effective decrease in the film 
thickness [33], and, correspondingly, to the decrease in sample conductivity. 
Terms, which contain the grain-boundary parameter  in formula (4), define 
the influence of the grain boundaries on the electrical conductivity of thick 
film. Analysis of the obtained asymptotic expressions shows that in the case 
when inequality   k holds the charge carrier scattering at the GB in com-
parison with the scattering at the outer boundaries is negligible and can be 
neglected. In this case the film conductivity is determined by the formula 
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which coincides with the corresponding asymptotic formula for the electrical 
conductivity coefficient within the Fuchs-Lucas formula [30, 31]. 
 In the case when the opposite inequality k << 1 holds, i.e., when the film 
thickness d is much less than the free path l of charge carriers, exponents, 
which are present in the integrand of expression (1), can be expanded in 
powers of k/x,  and  the  following  expression  for  the  conductivity  can  be  
obtained in the case when inequality   k holds: 
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In this case the external size effect is the dominant one, and the charge 
carrier scattering at the GB (internal size effect) is negligible and can be 
neglected. 
 Analysis of asymptotic expression (7) showed that it is more reasonable in 
the case qj << d/l, i.e., when outer boundaries of the conductor diffusively 
scatter charge carriers (since d/l << 1).  Only in this  case  the expansion of  
the expression in curly brackets of (1) in powers of k/x is justified. Taking 
into account this fact and performing the integration in (1) without expan-
sion in series of the mentioned expression we obtain the following result: 
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that describes the conductivity of thin film, the outer boundaries of which 
reflect electrons specularly (“mirror” film by the terminology of [34]). 
 Presented above asymptotic expressions become “transparent” if they are 
obtained using the “inefficiency” conception of Pippard [35], which firstly 
was used for the analysis of the anomalous skin effect. In accordance with 
this conception all electrons can be conditionally divided into “effective” 
(which are responsible for the effect) and inefficient. In conditions of strong 
size effect (d << l) the contribution of the electrons to the static size effect 
depends on the direction of their motion with respect to the conductor boun-
daries. Charge carries, the velocity direction of which makes an angle  < d/l 
with the conductor boundary, move parallel to the conductor surfaces and 
are the “effective” ones, i.e., give the main contribution to the effect. Those 
electrons, which move at large angles  > d/l to the film surfaces are scat-
tered by the conductor boundaries and are the inefficient ones. 
 “Effective” electrons are located in the vicinity of the Fermi surface 
within a belt about p  pF  dpF/l  wide (Fig. 2). The area of this belt for 
the spherical Fermi surface is equal to S  2 pF p  2 dpF

2/l. Ratio of the 
number of charge carriers, which are within the mentioned belt nef ~ S, to 
the total number of electrons on the Fermi surface is given by the formula 
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where c is the numerical factor of the order of 1, and the effective conduc-
tivity conditioned by these charge carriers is equal to 
 

 
2 2

0ef ef
F F

e l e l d d
n nc

p p l l
. (10) 

 
 
 

 
 
 
Fig. 2 – For the calculation of the 
conductivity of thin film using the 
“inefficiency” conception of Pippard: 
p (   x, y, z) are the components of 
quasi-impulse; F and pF are the Fermi 
velocity and impulse, respectively 
 
 
 
 
 

 

Thus, influence of the finiteness of metal layer thickness on its conductivity 
is reduced to the change of the number of effective electrons on the Fermi 
surface, which form current in the film and define its conductivity. In a thick 
film, as it was mentioned above, almost all electrons in the vicinity of the 
Fermi surface participate in the current formation (in other words, almost 
all charge carriers are the effective ones), and therefore in this case the 
change in the conductivity of the thick conductor is negligible in comparison 
with the bulk sample [31]. Limitations in the sample thickness (thin film, 
d << l) leads to the sharp decrease in a number of effective electrons (their 
fraction is d/l), and, correspondingly, to the substantial decrease in the con-
ductivity of the thin film in comparison with the bulk sample (we note, 
leads to the decrease in a number of effective charge carriers responsible for 
the effect, but not in the total number of electrons). Logarithmic factors in 
formulas (7) and (8) define the fraction of electrons moving almost parallel 
to the boundaries of a thin conductor (their free path is limited only by the 
collisions in the conductor volume). Specular reflection of the electrons by 
the outer boundaries in the case of both the relatively thick and the thin 
films with the spherical dispersion law is strictly correlated, and therefore 
their conductivity will coincide with the conductivity of the bulk metal. 
 Presented asymptotic expressions (8) and (9) for the conductivity of the 
thin  film  allow  to  obtain  the  working  formulas  for  the  calculation  of  the  
electron transport parameters in thin film [3, 36]. But before writing them 
we should take into account the following circumstance. Comparison of the 
asymptotic formulas for the conductivity, obtained under conditions that the 
boundaries of the conductor scatter electrons in the same (q1  q2  q) and in 
different (q1  q2) ways, shows that in the last case the interaction of charge 
carriers with the conductor boundaries can be described by the effective 
reflectivity parameter written in the form of [34] 
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But since the asymptotic formula (7) is correct only if the inequality qj << d/l 
holds, the product q1q2 in formula (10, b) can be neglected being the quantity 
of the second order of smallness, and the effective reflectivity parameters 
for thick film (at the arbitrary type of the interaction between the electrons 
and the boundaries) and thin film (at almost diffusion type of the interaction 
between the charge carriers and the conductor boundaries since the equality 
qj << d/l < 1 holds) will coincide, i.e., 
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Taking into account correlation (11), asymptotic formulas (6) and (7) can be 
written as 
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If conductor is rather thick, formula for the resistivity, as it follows from 
(12, a), can be written in the form convenient for the processing of the expe-
rimental results taken from the dimensional dependence of the resistivity 
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where 0 is the resistivity of a bulk (d  ) sample with a monocrystalline 
structure. 
 With the decrease in the average grain size the probability of the charge 
carrier scattering at the GB increases, and the conductivity of thin conductor 
can be written in the form of [32] 
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where the term 4 /   defines the fraction of electrons scattered by the inter-
grain boundaries, and the internal size effect becomes “commensurable” with 
the external size effect. 
 With the further growth of the parameter  in such a way that  >> 1/k, 
the electron scattering at the inter-grain boundaries is the main mechanism 
of electron relaxation. Charge carrier scattering at the outer boundaries can 
be neglected in comparison with their scattering at the GB, and, correspon-
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dingly, conductor will be effectively “thick”. In other words, in this case the 
external size effect is negligible in comparison with the internal one, and 
the electrical conductivity coefficient of “thin” sample is given by formula 
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 In Fig. 3 we present the set of lines obtained by the numerical calculation 
using correlation (1), which illustrate the dependence of the conductivity / 0 
on the normalized film thickness k and the grain-boundary parameter . 
 

   
a b c 

 

Fig. 3 – Dependence of the conductivity of polycrystalline film on the normalized (to the 
electron free path) film thickness k (a, b) and the grain-boundary parameter  at the 
following parameter values: à)   1: 1 – qj  0,8, 2 – qj  0,4, 3 – qj  0,0; b) qj  0,1: 
1 –   0,1, 2 –   1, 3 –   5; c) k  0,1: 1 – qj  0,8, 2 – qj  0,4, 3 – qj  0,0 
 
2.2 Approbation of asymptotic correlation for the conductivity of poly-

crystalline films with a mono-block structure 
 

Conductivity of polycrystalline film with a mono-block structure is described 
by expression (4) where it is necessary to take into account correlation (11) 
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 Dimensional dependences of the conductivity for Al and Ni films were 
experimentally obtained to approbate correlation (16). Films were obtained 
by the electron-beam (Ni) and thermal (Al) evaporation method in vacuum of 
the order of 10–3-10–4 Pa on the substrate at the temperature of Ts  300 K. 
Glass or glass ceramic polished plates and thin carbon films were used as the 
substrates while investigating the conductivity of the samples and performing 
the electron-microscopic investigations, respectively. The condensation rate 
of metal layers was 0,2-0,5 nm/s and 1,5-3 nm/s for Ni and Al films, 
respectively. To stabilize the electrophysical properties and for the structure 
recrystallization, film samples were annealed during three cycles by the 
scheme “heating  cooling” with constant rate in the temperature range 
from 300 to 680-700 K. Universal digital voltmeters were used to determine 
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the resistance by two- or four-point scheme. Temperature control with an 
accuracy of 1 K was realized using a chromel-alumel thermocouple connected 
with digital voltmeter. Sufficiency of this stabilization method is observed 
in Fig. 4. It is easier to see that the heating and cooling curves are over-
lapped after the first thermostabilization cycle. 
 

 

Fig. 4 – Temperature dependence of the resistivity of Al film of the thickness d  82 nm: 
,  – ² cycle; ,  – ²² cycle; ,  – ²²² cycle (dark – heating, light – cooling) 

 

 Thickness of film samples was determined by the interferometric method 
(device MII-4) with an accuracy to 10%. The stainless steel masks were used 
to provide the iteration of the film length (a1) and width (a2) that allowed to 
calculate the resistivity using correlation   Rfa2da1

–1 (Rf is the resistance). 
 Electron-diffraction investigations showed that Al and Ni films have the 
fcc-structure, and the lattice parameters for Al and Ni films are equal to 
a  (0,406-0,407) nm and a  (0,352-0,353) nm, respectively, that corresponds 
to the values a0  0,406 nm (Al) and a0  0,3524 nm (Ni) for bulk samples [37]. 
 

 

Fig. 5 – Crystal structure of Ni (a) and Al (b) films of the thickness of 20 nm and 
33 nm, respectively 

  106 Ohm m 
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a 60 nm b 
60 nm 
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 Data processing of electron microscopic investigation (Fig. 5) allowed to 
determine the average grain size and linear nature of its dependence on the 
thickness, i.e., L  kd, k is the coefficient of proportionality. For Ni films, 
which were thermally treated in the temperature range of 300-700 K, k  1 
that follows from both the cited publications (see, for example, [32, 38]) and 
our results. For Al films the coefficient k is almost equal to 1 (Fig. 6). 
 

d, nm0 30 60 90 120

L, nm

0

30

60

90

120

 
 

Fig. 6 – Dependence of the average grain size on the Al film thickness. The annealing 
temperature is 700 K 
 

 Analysis  of  the  obtained  results  showed  that  Ni  and  Al  films  at  the  
mentioned conditions of preparation and thermal treatment are the coarse-
grain and mono-block in thickness and, correspondingly, inequality  << 1 
holds for these films. Therefore correlation (16) was used for the calculation 
of the conductivity of film samples. Here, due to the fitting of the grain-
boundary scattering parameter, which in this case was as an adjusting one, 
the agreement between the experimental and calculated values of the con-
ductivity was reached. Calculation of the parameter  was performed under 
condition that l  const. Note, that instead of the value 0 we used 0lim

d
, 

which is the conductivity of a bulk sample with the same type of defects and 
defect concentration as in the film. In our case this value was determined by 
the reconstruction of the experimental dependence of  on d in coordinates 
of  on d–1.  For Ni  and Al  films the value of   is  7,7 106 (Ohm m)–1 and 
1,47 107 (Ohm m)–1, respectively. We have taken the value of l(1 – qef) from 
papers [32] (Ni) and [39] (Al); it is equal to 33 nm and 80 nm for Ni and Al, 
respectively. 
 In Fig. 7 we present dimensional dependences of the conductivity for Al 
and Ni films. Agreement of the experimental and calculated values of the 
conductivity is observed for the case when the value of the grain-boundary 
scattering coefficient R varies in the range of thickness from 0,37 to 0,46 
for Ni and from 0,09 to 0,3 for Al films. Comparing the obtained numerical 
values for the coefficient R and the known data (see, for example, [22, 40]) 
it is possible to see their qualitative and quantitative agreement. 
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a b 

 

Fig. 7 – Dependences of the conductivity on the thickness for Ni (a) and Al (b) films: 
 – experiment,  – calculation 

 
3. TEMPERATURE COEFFICIENT OF RESISTANCE 
 

3.1 Theoretical analysis of size effects in the temperature coefficient of 
resistance 

 

Temperature change of the resistance Rf of polycrystalline films in conditions 
of the external and internal size effects is defined by the dependence of the 
free path l of charge carriers on the temperature, on the one hand, and by 
the temperature dependence of the metal layer thickness d and the average 
grain size L, on the other hand. 
 By definition the temperature coefficient of resistance  is equal to [14] 
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d R a
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dT a d
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where a1 and a2 are the film length and width, respectively;  is the film 
conductivity determined by expression (1). 
 In most of theoretical papers (see the review monographs [14, 34]) while 
analytically calculating the TCR it is considered that the temperature coef-
ficient of resistance  (which is directly determined from the experimental 
investigations) is equal to the temperature coefficient of resistivity , i.e., 
  . But this equality usually holds for monocrystalline and most of poly-

crystalline samples since the coefficient of thermal expansion T of geomet-
ric sizes of the sample is small: T < (10–2-10–3)  [34]. If condition  >> 1 
holds for a film sample, the temperature coefficient of thickness expansion 
for metal layer and crystallites can be commensurable with the temperature 
coefficient of resistivity, i.e., T   [34]. Therefore the TCR of polycrystal-
line film was determined as the change of the total resistance Rf with the tem-
perature (17), and henceforth the effects of thermal expansion of the metal 
layer thickness d and the average grain size L will be taken into account. 
 Substituting expression (1) into correlation (17), we obtain general analytical 
expression for the TCR with regard to the temperature dependence of geo-
metric sizes of the sample, coefficients qj and R, and the temperature change 
of the average grain size L: 
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which determine the temperature change of the electron free path, average 
grain size, scattering coefficient of the charge carriers at the GB and Fuchs 
reflectivity coefficient, respectively, and the value of  is determined by (1). 
 Change in the plate thickness with temperature with regard to the subs-
trate properties, which is deposited by the film, is defined by relation [14] 
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where d  dlnd/dT is the temperature change of the metal layer thickness; 
 is the Poisson coefficient of a film conductor; S is the temperature coef-

ficient of expansion of the substrate material. 
 Temperature coefficient of resistivity of an infinite sample can be deter-
mined as follows [41]: 
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where it is taken into account that the coefficients defining the temperature 
change in the film width and length coincide due to the fact that the film 
sizes along y and z axes are infinitely large with respect to the film thickness. 
 In the low-temperature range the reflection coefficients of electrons from 
the outer and inner boundaries do not practically depend on the temperature 
[19]. In the intermediate-temperature range the grain boundary evolution 
conditions temperature dependence of the coefficient R, but its changes are 
negligible. Note, that in [42] the influence of the temperature coefficients of 
the electron-transport parameters on the TCR value is discussed. Neglecting 
the temperature dependence of the coefficients q and R and substituting for-
mula (1) into correlation (18) for the temperature coefficient of resistance we 
obtain the following expression at arbitrary relation between the film thick-
ness and the electron free path and at arbitrary values of the reflectivity 
parameters qj and the grain-boundary parameter  [42]: 
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 Correlation (21) determines the exact (within the given model) value of 
the temperature coefficient of resistance of thin polycrystalline film, the 
outer boundaries of which scatter electrons in different way. Integrals in 
formula (21) cannot be expressed in elementary functions, and therefore 
further theoretical analysis of the TCR is possible by numerical calculation 
only.  However,  for  large and small  values  of  the parameters  k and  it is 
possible to obtain rather simple analytical expressions for the TCR, which 
allow to compare theory with experiment. 
 If polycrystalline metal layer is rather thick, i.e., k >> 1, for arbitrary 
values of the parameters qj and  the TCR of a thick sample is defined by 
formula (21) where the asymptotic value of the function  is determined by 
expression (4), and the asymptotic values of the functions J and J  can be 
written as follows: 
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where the value of I is defined by the formula (5). 
 Obtained asymptotic formula (21) for arbitrary values of qj and  in the 
case when d >> l can be significantly simplified for polycrystalline samples 
with coarse-grain (  << 1) and fine-grain (  >> 1) structures 
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 It follows from asymptotic correlations (28) and (29) that consideration 
of the thermal expansion of the metal layer thickness and the average grain 
width decreases the value of the temperature coefficient of total resistance 
of polycrystalline film samples. 
 For  thin  films  (d >> l) with coarse-grain structure (   d/l) asymptotic 
formulas for the temperature coefficient of resistance with different types 
of interaction between charge carriers and boundaries of thin conductor can 
be written as follows: 
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 With the increase in the grain-boundary parameter  the temperature 
coefficient of resistance can be estimated by the order of magnitude using 
the following correlations (qj << d/l): 
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Fig. 8 – Dependence of the temperature coefficient of resistance of a thin film with 
polycrystalline structure on the normalized (to the electron free path) film thickness k 
(a, b) and the grain-boundary parameter  (c) at the following values of the parameters 
/ 0  L/ 0  10–3: a)   1: 1 – qj  0,8, 2 – qj  0,4, 3 – qj  0,0;  b) qj  0,3: 1 –

   0,1, 2 –   1, 3 –   5; c) k  0,1: 1 – qj  0,8, 2 – qj  0,4, 3 – qj  0,0 
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 It follows from formulas (30) and (31) that in the presence of a conductor 
with large roughness on the outer boundaries the TCR does not depend on 
the reflectivity parameter [36], and in the case of its fine-grain structure 
the TCR value is negative since the electron scattering at the GB is the main 
mechanism of electron relaxation in this case. 
 In Fig. 8 we present the series of curves obtained by the numerical 
calculation using exact formula (31), which illustrate the dependence of the 
temperature coefficient of resistance of thin polycrystalline film on the 
normalized film thickness k and the grain-boundary parameter . 
 
3.2 Experimental analysis of size effects in the temperature coefficient of 

resistance 
 

To approbate proposed correlations we obtained the experimental dependence 
of  the  TCR  on  the  thickness  for  Ni  and  Al  films  (Fig.  9),  the  production  
method of which was described in detail in the previous subsection. 
 

 

Fig. 9 – Dependences of the temperature coefficient of resistance on the thickness for 
Al (a) and Ni (b) films:  – experiment,  – calculation 
 

 To process the experimental results of the dimensional dependence of the 
TCR one can use correlation (28) (investigated film samples partly satisfy 
the requirement  << 1). Since in the considered case the values of d and L 
are of the order of 10–6 K–1 and 0  10–3 K–1, two last terms in correlation 
(28) can be neglected, and taking into account formula (11) for the TCR of 
polycrystalline film we can write 
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 As in the case of the conductivity while calculating the TCR it is reasonable 
to use the value lim

d
 (which  is  the  TCR of  a  bulk  sample  with  the  

same type of defects and defect concentration as in the film) instead of 0. For 
Ni and Al films the value of  is equal to 3,94·10–3 Ê–1 and 2,17·10–3 Ê–1, 
respectively. In Fig. 9 we present the experimental and calculated dependen-
ces of the TCR for Al (à) and Ni (b) films. Agreement of the experimental 
and theoretical data in each specific case was achieved by the fitting of the 
values of the grain-boundary scattering coefficient. The values of this coef-
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ficient for Ni films varied in the range of 0,37-0,40 and for Al films – in 
the range of 0,15-0,36. In spite of the fact that this data correlates with 
that obtained for the conductivity, it was possible to gain more agreement 
between the theoretical and experimental values of the TCR while fitting the 
average free path value in each point. For Al film in the thickness range of 
20-140 nm l(1 – qef)  80-130 nm, for Ni films in the thickness range of 25-
150 nm l(1 – qef)  30-80 nm. The authors of [43] analyzed the change of the 
average free path with the change of the average grain size. It is evident 
that in film samples with smaller value of the average grain size the grain 
boundaries impose more restrictions to the total value of the average free 
path than in coarse-grain films. 
 
4. CONCLUSIONS 
 

Based on the correlations of the Mayadas and Shatzkes theory we present 
the numerical calculations of the dependences of the conductivity and the 
TCR of metal films on the normalized thickness and the grain-boundary 
scattering coefficient at different values of the parameters, which characte-
rize surface and grain-boundary electron relaxation. It is shown that streng-
thening of the grain-boundary and surface scattering causes changes of the 
mentioned coefficients. 
 Investigations of the dimensional dependences of the conductivity and the 
TCR for single-layer mono-block Ni and Al films are performed. Agreement 
between the experimental and calculated data of the kinetic coefficients is 
achieved when the grain-boundary scattering coefficient is used as the adjus-
ting parameter. It is shown that while calculating the conductivity the value 
of R is 0,37-0,46 (Ni film) and 0,09-0,30 (Al film), and while calculating the 
TCR it is equal to 0,37-0,40 (Ni film) and 0,15-0,36 (Al film). 
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