Ж. нано- і електрон. фіз./ J. Nano.-Electron. Phys. 2009.– Т.1, №4. – С. 54-65 ©2009 СумДУ (Сумський державний університет)

PACS numbers: 61.46. – w, 62.20.Qp, 62.25. – q

НАНОКОМПОЗИТНЫЕ ПОКРЫТИЯ НА ОСНОВЕ Ті-N-Cr/Ni-Cr-B-Si-Fe ПОЛУЧЕННЫЕ ДВУМЯ ТЕХНОЛОГИЯМИ

Н.К. Ердыбаева

Восточно-Казахстанский государственный технический университет, ул. Протазанова 69, 070004, Усть-Каменогорск, Казахстан

Представлены первые результаты по получению и исследованию нового типа нанокомпозитных, защитных покрытий, полученных комбинированным методом на основе двух технологий нанесения: плазменно-детонационного осаждения покрытия с помощью плазменных струй и вакуумно-дугового осаждения тонкого покрытия. В покрытиях толщиной ($80 \div 90$) мкм исследована структура, физико-механические свойства, морфология, а так же определены твердость, упругий модуль Юнга и коррозийная стойкость в разных средах. Размеры зерен нанокомпозитного покрытия на основе твердого раствора (Ti, Cr)N, были получены ($2,8 \div 4$) нм. Обнаружено увеличение твердости нанокомпозитного покрытия до $32 \pm 1,1$ ГПа. Определено значение модуля упругости 320 ± 20 ГПа, которое получено из кривых нагружения-разгрузки. Показано увеличение корозионной стойкости защитных покрытий в кислотных и щелочных средах по сравнению с подложкой из нержавеющей стали.

Ключевые слова: НАНОКОМПОЗИТЫ, ПЛАЗМЕННО-ДЕТОНАЦИОН-НОЕ ОСАЖДЕНИЕ, ПЛАЗМЕННАЯ СТРУЯ, ВАКУУМНО-ДУГОВОЕ ОСАЖДЕНИЕ, МОДУЛЬ УПРУГОСТИ, ИНДЕКС ПЛАСТИЧНОСТИ, КОРРОЗИОННАЯ СТОЙКОСТЬ.

(Получено 10.11.2009, в отредактированной форме – 03.12.2009)

1. ВВЕДЕНИЕ

Хорошо известно, что область исследования наноструктурных объектов является наиболее быстроразвивающейся в современном материаловедении, поскольку сверхтонкая дисперсная структура становится причиной существенного улучшения, а в отдельных случаях – коренного изменения свойств материала [1, 2]. Исследование сверхмелкозернистых материалов показали, что уменьшение размеров кристаллов ниже некоторой пороговой величины может приводить к значительному изменению свойств. Размерные эффекты проявляются в том случае, когда средний размер кристаллических зерен не превышает 100 нм, а наиболее отчетливо наблюдается, когда их размер приближается к 10 нм, а межкристаллитная (межзеренная прослойка) составляет единицы нанометров, состоящая как правило из аморфной фазы (нитридов, оксидов, карбидов и др.). С физической точки зрения переход к наносостоянию связан с появлением размерных эффектов, под которыми следует понимать комплекс явлений, связанных с изменением свойств вещества вследствие совпадения размера блока микроструктуры и некоторой критической длины, характеризующей явление (длины свободного пробега электронов и фононов, толщины стенки доменов, критический радиус дислокационной петли и др.) [1-5].

В работах [6-11] было показано, что комбинированные и гибридные покрытия на основе $Al_2O_3/Cr/TiN$ и Al_2O_3/TiN до и после обработки электронным пучком изменяют (улучшают) несколько служебных характеристик, таких как износ, адгезия, стойкость к коррозии и температурную стойкость до 950 °С при образовании γ -фазы возможно повышение стойкости к температуре до 2000 °С при формировании α -фазы Al_2O_3). В работах [13-14] было обнаружено, что нанесение покрытий на основе Ni-Cr (Fe, Si, B) на сталь (или изделия из стали) улучшает твердость, износ, стойкость к коррозии и адгезию не только в результате нанесения покрытия, но и его последующего оплавления электронным пучком или плазменной струей.

В настоящей работе представлены результаты исследований структуры и свойств нового типа нанокомпозитных защитных покрытий на основе Ti-N-Cr/Ni-Cr-B-Si-Fe нанесенных при помощи плазменно-детонационной технологии и вакуумно-дуговым осаждением (TiCrN толщиной $2,4 \div 3$ мкм тонкого покрытия). Таким образом, целью данной работы было получение и исследование их структуры и физико-механических свойств нанокомпозитных защитных покрытий Ti-N-Cr/Ni-Cr-B-Si-Fe толщиной от 80 до 120 мкм.

2. ПОЛУЧЕНИЕ ПОКРЫТИЙ И МЕТОДЫ АНАЛИЗА

Прутки нержавеющей стали 12Х18Т прокатывали и из них получали образцы размерами $2 \times 20 \times 20$ мм электроискровой резкой, которые затем отжигали для снятия наклепа и дефектности. На образцы были нанесены покрытия из порошка ПГ-19Н-01 размером (29-68) мкм следующего состава: Ni – основа; Cr ~ 8-14 %; Si = 2,5 ÷ 3,2 %; В ~ 2 %; Fe ~ 5 %. С помощью плазмотрона «Импульс-6» было нанесено покрытие толщиной от 90 до 120 мкм (с параметрами: фракция порошка ~ (29 ÷ 68) мкм. Расход порошка ~ 22,5 г/мин. Частота следования импульсов 4 Гц. Емкость конденсаторных батарей 800 мкФ. Расстояние до образцов 60 мм, скорость перемещения образцов 380 мм/мин. В качестве расходуемого электрода W. был использован Перед напылением поверхность образнов струйно-абразивной обрабатывалась методикой С последующим оплавлением плазменной струей и с эродирующим электродом из W. Повторное оплавление поверхностного слоя покрытий проводилось плазменной струей без порошка. Частота следования З Гц, емкость 800 мкФ. Расстояние от среза сопла до образца 45 мм. Скорость перемещения 300 мм/мин). Часть образцов была оплавлена плазменной струей таким образом, чтобы оплавился слой толщиной 60 ÷ 80 мкм, а другая часть образцов осталась не оплавленной. Затем на половине образцов был прошлифован верхний слой для уменьшения шероховатости.

На все образцы были нанесены тонкие покрытия TiNCr толщиной около 2,4 мкм с помощью вакуумно-дугового источника в вакууме. Поверхность толстого покрытия отжигали путем воздействия дугового разряда в течение 1 мин. (10^{-3} Па) при токе горения дуги титанового катода 100 A и опорном напряжении 1 кВ. Осаждение покрытий проводили в камере установки при давлении азота 10^{-3} Па, ток горения дуги хромового и

титанового катодов составлял 100 А при опорном напряжении 120 В. Время осаждения тонкого покрытия составляло 10 мин.

Для исследования элементного состава использовали Резерфордовское обратное рассеяние ионов с энергией ионов 4 He⁺ с энергией 2,35 МэВ и протонов 2,012 МэВ (Дубна, ОИЯИ) [3]. Анализ морфологии и элементного состава проводили с помощью растрового электронного микроскопа РЭММА-103М с микроанализатором (EDS – энерго-дисперсионным и WDS – волновым дисперсионным спектрами). Структуру и фазовый состав изучали на установке Advance 8 (XRD-анализ) включая скользящий пучок от 0,5° [6]. Проводили микроанализ с помощью спектрального электронного микроскопа LEO-1455R, по ширине шлифа (тонкого и толстого покрытия) для различных условий обработки толстого покрытия (без плавления и с плавлением плазменной струей) [6].

Были поведены электрохимические коррозионные испытания в среде 1% NaCl с использованием PCI 4/300-потенциостат-гальваностат ZRA, и электрохимического программного обеспечения ДС-105 и коррозионной ячейки. В результате были получены экспериментальные зависимости и кривые Тейфеля.

Другая часть испытаний поводилась в 2 % водном растворе NaCl при T = 18 °C определяли скорость коррозии, коррозийные потенциалы и токи, коэффициенты Тейфеля. Все потенциалы представлены относительно каломелиевого электрода сравнения. Кроме того, были получены циклические вольтамперо-метрические характеристики образцов в 1М H_2SO_4 в 1М NaOH растворе.

Испытания твердости проводились трехгранным индентором Берковича на нанотвердомере Nano Indentor-II, MTS Systems Corporation, Oak Ridge,TN USA[10].

В процессе испытаний с высокой точностью регистрировалась зависимость перемещения вершины индентора Берковича от нагрузки. Точность измерения глубины отпечатка равна $\pm 0,04$ нм нагрузки на индентор – ± 75 нН. Прибор выполняет около 3 замеров нагрузки и перемещения за 1 секунду для уменьшения вибраций он установлен на виброизолирующем столе. При каждом испытании индентор нагружался/разгружался три раза, каждый раз для более высокой нагрузки, которая не превышала 5 мкН (= 0,5 G) при глубине 150 H.

Испытания проводились при постоянной скорости внедрения индентора, которая была равна 5 нм/с. На каждом образце наносилось по 5 отпечатков на расстоянии 30 мкм друг от друга. Чтобы уменьшить различие в температуре образца и индентора, образец помещается в прибор на 12 часов до начала испытаний. Температура в помещении придерживается постоянной с точностью до $\pm 0,5$ с. Испытания не начинаются, если скорость теплового расширения стержня индентора выше 0,05 нм/с. Во время разгрузки для каждого испытания скорость теплового расширения индентора измерялась еще раз и в результате вносилась соответствующая поправка. После испытаний твердость находилась на глубине отпечатка под нагрузкой, модуль упругости – из анализа кривой разгрузки [10, 14].

Мессбауэровские спектры (МС-спектры) снимались путем регистрации у-квантов в геометрии прохождения. МС-спектры снимались на порошках, приготовленных из стружки, спиленной с поверхности тонкого покрытия и частично толстого покрытия образцов нержавеющей стали. Все спектры обрабатывались методом восстановления функций распределения двух тонких параметров (эффективного магнитного поля H, квадрупольного смещения ε и сдвига мессбауэровской линии ∂). Относительная эффективность парциальных месбауэровских спектров определялась исходя из предположения о неизменности динамических характеристик атомов Fe в различных позициях, по относительному содержанию фаз (в атомных единицах железа) или количеству атомов Fe в различных позициях.

3. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлено изображение участка поверхности TiNCr наноструктурированного композитного защитного покрытия. Видно, что на поверхности покрытия присутствуют участки капельной фракции (на них обозначены точки, в которых проводился микроанализ). Как видно из точки 1 на поверхности покрытия, в рентгеновском энергодисперсионном спектре обнаружены: Si, Ti, Cr и Ni (следы).

Рис. 1 – Изображение поверхности покрытия Ti-N-Cr/Ni-Cr-B-Si-Fe(Mo,W), полученное с помощью растрового электронного микроскопа (РЭМ). На фото показаны точки, в которых проводился микроанализ

Рис. 2 – Энергодисперсионные рентгеновские спектр, полученные в указанной выше точке комбинированного покрытия (интегральный анализ участка размером 50 × 50 мкм, толщина около 2,5 мкм

Рис. 2 и таблица 1 отображают результаты интегрального и локального анализа. Результаты дают примерно одинаковую картину по концентрации Si (от 0,56 до 0,58 %); Ti (от 39 до 41,87 %); Cr (56,8 \div 59,4 %) и, наконец Ni (от толстого покрытия) – 0,82 \div 0,98 %.

Таблица 1 – Распределение элементов по поверхности покрытия TiNCr

	Si	Ti	Cr	Ni	Σ
p19_int1	0,578	40,509	58,095	0,819	100,000
p19_int2	0,487	41,867	56,797	0,850	100,000
p19_2	0,564	39,073	59,390	0,973	100,000
p19_1	0,507	40,711	57,805	0,978	100,000

На рис. За и 36 представлены спектры Резерфордовского обратного рассеяния (РОР) на протонах (рис. 2а) и ионах гелия ⁴He⁺ (рис. 36). Как видно из этих спектров, в покрытии обнаружены все элементы, входящие в состав покрытия TiNCr/Ni-Cr (Si, B, Fe): N, O, Ti, Cr. Обращает на себя внимание наличие на спектре «полочки» почти на всю глубину анализа тонкого покрытия, что говорит о равномерном распределении азота и образовании соединения (Ti, Cr)_xN_{1-x}. Стехиометрия предполагаемого соединения близка к Ti₄₀Cr₄₀N₂₀ (или (Ti, Cr)₂N), если следовать соотношениям (1), (2), представленным далее по тексту [12, 13].

Известно из [7], что с помощью выражения (1):

$$\frac{N_{Ti}}{N_{Cr}} = \frac{H_{Ti} \cdot \sigma_{Cr}}{H_{Cr} \cdot \sigma_{Ti}} \cong \frac{H_{Ti}}{H_{Cr}} \cdot \left(\frac{Z_{Cr}}{Z_{Ti}}\right)^2 \tag{1}$$

можно оценить стехиометрию, где N_{Ti} и N_{Cr} – процентное отношение концентрации Тi и Cr; H_{Ti} и H_{Cr} – амплитуда сигнала от Ti и Cr соответственно; σ_{Ti} и σ_{Cr} – сечение рассеяния на атомах Ti и Cr соответственно; Z_{Ti} и Z_{Cr} – атомные номера Ti и Cr

$$\frac{N_{Ti}}{N_{Cr}} \cong \frac{H_{Cr} \cdot \Delta E_{Cr} \cdot \sigma_{Ti}}{H_{Ti} \cdot \Delta E_{Ti} \cdot \sigma_{Cr}}$$
(2)

Здесь мы пренебрегли различием торможения вдоль обратной траектории для частиц, рассеянных на атомах титана и алюминия.

Вдоль обратной траектории для частиц рассеянных на атомах Ti и Cr выход рассеянных на этих элементах в соединении приближенно равен произведению амплитуды сигнала на его ширину ΔE . Тогда более точное отношение можно заменить для двух элементов равномерно распределенных внутри слоя (или пленки), задается выражением (2).

На рис. 2 б также видно, что пики титана и хрома немного смещены и образуют «ступеньку» вблизи поверхности тонкого покрытия, что также говорит об образовании соединения $Ti_x Cr_{1-x}$ в слое толщиной порядка нескольких десятых микрометра.

В таблице 2 приведен состав покрытия, полученный из спектров POP по стандартной программе [13]. Также видно, что наблюдается

небольшая концентрация W (0,07 ат.%) в тонком покрытии, а вблизи границы раздела «тонкое покрытие – толстое покрытие» его концентрация увеличивается до 0,1 ат. %. Видимо, W попал из толстого

покрытия (из эродирующего электрода). Состав подложки из нержавеющей стали дает соотношение $Ni_{61}Cr_{39}$ (т.е. в подложке образуется соединение близкое по составу Ni_3Cr_2) [1].

Ниже на рисунке 4 представлено изображение поперечного шлифа покрытия Ti-N-Cr/Ni-Cr-B-Si-Fe, а справа также представлено распределение элементов по глубине шлифа (Б-Б'). Тонкое покрытие состоит из Ti, Cr (наличие N не позволяет выделить разрешение детектора).

Рис. 3 – Энергетический спектр РОР рассеяния: протонов с начальной энергией 2,012 МэВ, полученный от образца Ti-N-Cr/Ni-Cr-B-Si-Fe(Mo,W). (стрелками указаны границы кинематических факторов для разных элементов) (а); ионов гелия с начальной энергией 2,035 МэВ, полученный от образца Ti-N-Cr/Ni-Cr-B-Si-Fe(Mo, W)

Глубина	Концентрация (ат. %)				
элемент	0	Ν	Cr	Ti	W
500,0	0,07	0,00	38,70	38,70	11,26
1000,0	0,07	0,00	38,70	38,70	9,01
1850,0	0,09	0,00	38,70	38,70	4,50
2850,0	0,09	0,00	38,70	38,70	2,25
11850,0	0,00	61,30	38,70	0,00	0,00

Таблица 2 – Распределение элементов по глубине покрытия TiNCr

Рис. 4 – Растрово-электронно микроскопические изображения сечения (а) и распределения характеристического рентгеновского излучения элементов (б) вдоль (сечения Б-Б') в покрытии на основании твердого раствора (Ti,Cr)N, тонкое покрытие нанесено на толстое покритие на основе Ti-N-Cr/Ni-Cr-B-Si- Fe(Mo,W) оплавлено плазменной струей (1 – Cr; 2 – Ti; 3-Ni; 4-C; 5-O; 6-Fe; 7-W)

Если сравнить поверхности как в обычном режиме, так и в элементном контрасте (со стороны тонкого покрытия – твердого раствора (Ti, Cr) N нанесенного на оплавленное толстое покрытие плазменной струей и не оплавленное), то можно обратить внимание на различие распределения элементов на поверхности. В случае оплавленной поверхности толстого покрытия, происходит перераспределение элементов на границах зон плавления и из глубины толстого покрытия происходит массоперенос элементов.

Результаты XRD-анализа, проведенного на покрытии TiCrN/Ni-Cr, показали наличие фазы: (Ti, Cr)N (200); (Ti, Cr)N (220); γ-Fe₃Ni₃, а в образцах №8 и №10 дополнительно обнаружен (Ti, Cr)N, но уже с фазой FeNi₃.

Обнаружено смещение дифракционных пиков, изменение площади под пиком и соотношения интенсивностей. Измерение и анализ дифракционных линий, снятых в режиме скользящего пучка, показал размытие пиков, что указывает на аморфизацию или образование нанокристаллических фаз.

Кроме основных фаз обнаружено присутствие дополнительных: простая гексогональная Cr_2Ti ; Fe_3Ni (Fe, Ni) и различные соединения титана с никелем (Ti_2Ni ; Ni_3Ti , Ni_4Ti_3 и др.). Формирование дополнительных фаз происходит на начальных этапах осаждения покрытия в результате протекания процессов диффузии титана, хрома, никеля и железа. Установлено, что полученный твердый раствор является мелкодисперсным (размер зерен, рассчитанный по формуле Дебая-Шерера, составляет около ($2.8 \div 4$) нм.

Сравнение рентгеновских спектров, полученных на образцах №8 и №10 (после оплавления плазменной струей покрытия из ПГ-19Н-01 с последующим осаждением тонкого покрытия из TiNCr) не выявило различий в фазовом составе (скользящий пучок под углом 0,5°).

Парциальный спектр I соответствует нержавеющей стали. Некоторая асимметрия квадрупольного дублета (разные амплитуды и ширины, но одинаковые площади резонансных линий) обусловлена неоднородностью окружения атомов Fe см. таблице 3.

Параметры	I			II			
спектров	δ , мм/с	<i>є</i> , мм/с	I, %	δ , мм/с	<i>є</i> , мм/с	<i>H</i> _n , кЭ	I, %
Подложка	1 - 0,090	1 - 0,090	100	_	_	_	_
Покрытие с	2	2	2,2	3	2	2	6
подложкой	- 0,084	- 0,087	94,4	- 0,04	- 0,03	327	5,6

Таблица 3 – Результаты расчетов Месбауровских спектров

Парциальный спектр II соответствует частицам α-Fe. Отличные от нуля значения сдвига мессбауэровской линии δ и квадрупольного смещения ε, а также несколько меньшее значение сверхтонкого поля по сравнению с эталонным спектром α-Fe (330,4 кЭ) свидетельствуют о наличии наноразмерных примесей ≤ 100 нм (локально неоднородных систем) [12-15]. Морфология поверхности и поперечных сечений покрытий дополнительно изучалась методами растровой электронной микроскопии и рентгеноспектрального микроанализа с помощью спектрального электронного микроскопа LEO-1455R.

Из растрово-электронно микроскопических изображений сечений покрытия стало видно, что толщина наносимых тонких покрытий на основе твердого раствора (TiCr)N составляет (2,5 ÷ 3) мкм, а толщина покрытий на основе ПГ-19H-01 около 70 мкм (в случае шлифовки толстого покрытия), для толстого покрытия (Ni-Cr-B-Si-Fe) без шлифовки средняя толщина составляла около 90 мкм.

Тонкое покрытие (Ti;Cr)N на основе твердого раствора полностью повторяет рельеф подложки (см. рис. 4 а,б). Образцы с покрытием (Ti, Cr)N имеет скорость коррозии 6,8 и 84 мг/год, в зависимости от состава (стехиометрии) тонкого покрытия.

Из результатов исследования цикличных вольтамперных характеристик образцов с покрытием из Ti-Cr-N/Ni-Cr-B-Si-Fe(Mo, W) в разных средах а – 1M H_2SO_4 , б – 3 % NaCl, в – 1M NaOH в зависимости от опорного напряжения, лучшие характеристики по коррозийной стойкости были обнаружены у покрытия близкого к стехиометрии $Ti_{25}Cr_{25}N_{50}$.

Твердость H и модуль упругости E определялись с помощью нанотвердомера (Nanoindenter II) по методике Оливера и Фара [7-10] с использованием индентора Берковича. Величина упругого восстановления W_e поверхностного слоя рассчитывалась по кривым «нагружениеразгрузка» согласно выражения

$$W_e = \frac{h_{\max} - h_r}{h_{\max}}, \qquad (3)$$

где h_{max} — максимальная глубина проникновения; h_r — остаточная глубина после снятия нагрузки. Было получено, что модуль упругости покрытия из (Ti, Cr)N имеет значение $E_{cp} \sim 318$ ГПа, а твердость составляет 31,6 ГПа при максимальном значении 32,7 ГПа (см. рис. 5 и таблицу 4).

Для оценки стойкости материалов к упругой деформации разрушения используют величину отношения твердости к модулю упругости H/E, называемую индексом пластичности материала, а для оценки сопротивления материала пластической деформации – например H^3/E^2 [2-3].

Откуда следует, что для повышения стойкости к упругой деформации разрушения и уменьшения пластической деформации материал должен обладать высокой твердостью при низком модуле упругости. Как известно [5] у керамики и металлокерамики значение параметра H^3/E^2 типично не выше 0,2 ГПа, а для примера в TiNi (из-за ЭПФ) на порядок меньше [5].

Полученные нами новые композитные комбинированные покрытия имели значения параметра H^3/E^2 в интервале 0.32 ± 0.02 . Для многих материалов высокие значения параметра H/E указывают на то, что материал обладает высокой износостойкостью, при этом материалы имеют модуль упругости близкий к модулю Юнга материала подложки, то это может свидетельствовать о высоких служебных характеристиках при работе в условии абразивного, эрозионного и ударного износа [14, 15].

Рис. 5 – Кривые «нагружения и разгрузки» полученные для образца Ti-Al-N/Ni-Cr-B-Si-Fe(Mo, W)

Таблица 4 – Результаты расчета кривых нагрузки и разгрузки

Материал покрытия	<i>Е</i> , ГПа	<i>H</i> , ГПа	
Ti-N-Cr	319 ± 27	$\textbf{31,6} \pm \textbf{1,1}$	
Ni-Cr-B-Si-Fe	193 ± 6	$6,8 \pm 1,1$	
Ni-Cr-B-Si-Fe (Оплавление плазменной струей)	217 ± 7	6.1 ± 0.2	
Подложка	-	-	
(Ni Cr)	229 ± 11	1.78 ± 0.14	

4. ВЫВОДЫ

Представлены первые результаты по получению нанокомпозитных, комбинированных защитных покрытий на основе Ti-N-Cr/Ni-Cr-B-Si-Fe(Mo,W). Показано, что в твердом растворе (Ti, Cr)N формируются наноразмерные зерна ($2,8 \div 4$) нм, а также фазы Cr₂Ti; Fe₃Ni, Ti₂Ni; Ni₃Ti; Ni₄Ti₃ и др.

Твердость покрытия составляет $32,6 \pm 1,1$ ГПа, а модуль упругости 320 ± 20 ГПа. Обнаружено что данное покрытие имеет высокую коррозийную стойкость к кислым и щелочным средам. Полученное покрытие обладает высокой адгезией между собой (тонкое и толстое покрытие), а так же имеет высокую стойкость при трении цилиндра по поверхности образца.

н.к. ердыбаева

NANOCOMPOSITE COATINGS BASED ON Ti-N-Cr/Ni-Cr-B-Si-Fe , GAINED BY TWO TECHNOLOGIES

N.K. Erdybayeva

East-Kazakhstan State Technical University, 69, A.K. Protazanov St., 070004, Ust-Kamenogorsk, The Republic of Kazakhstan

The first results of manufacturing and investigations of a new type of nanocomposite protective coatings are presented. They were manufactured using a combination of two technologies: plasma-detonation coating deposition with the help of plasma jets and thin coating vacuum-arc deposition. We investigated structure, morphology, physical and mechanical properties of the coatings of $80 \div 90 \ \mu m$ thickness, as well as defined the hardness, elastic Young modulus and their corrosion resistance in different media. Grain dimensions of the nanocomposite coatings on Ti-N-Cr base varied from 2.8 to 4 nm. The following phases and compounds formed as a result of plasma interaction with the thick coating surface were found in the coatings: Ti-N-Cr (200), (220), y-Ni₃-Fe, a hexagonal Cr₂-Ti, Fe₃-Ni, (Fe, Ni)N and the following Ti-Ni compounds: Ti₂Ni, Ni₃Ti, Ni₄Ti, etc. We also found that the nanocomposite coating microhardness increased to $H = 31.6 \pm 1.1 \ \text{GPa}$. The Young elastic modulus was determined to be $E = 319 \pm 27 \ \text{GPa} - it$ was derived from the loading-unloading curves. The protective coating demonstrated the increased corrosion resistance in acidic and alkaline media in comparison with that of the stainless steel substrate.

Keywords: NANOCOMPOSITES, PLASMA-DETONATION COATING, PLASMA FLOW, VACUUM ARC DEPOSITION, ELASTIC MODULUS, PLASTICITY INDEX, CORROSION RESISTANCE.

НАНОКОМПОЗИТНІ ПОКРИТТЯ НА ОСНОВІ ТІ-N-Cr/Ni-Cr-B-Si-Fe ОТРИМАНІ ДВОМА ТЕХНОЛОГІЯМИ

Н.К. Ердибаєва

Східно-Казахстанський державний технічний университет, вул. Протазанова 69, 070004, Усть-Каменогорськ, Казахстан

Представлені перші результати по здобуттю і дослідженню нового типу нанокомпозитних, захисних покриттів отриманих комбінованим методом на основі двох технологій нанесення: плазмово-детонаційного осадження покриття за допомогою плазмових струменів і вакуумно-дугового осадження тонкого покриття. У покриттях товщиною ($80 \div 90$) мкм досліджена структура, физико-механические властивості, морфологія, а так само визначені твердість, пружний модуль Юнга і корозійна стійкість в різних середовищах. Розміри зерен отриманого нанокомпозитного покриття на основі твердого розчину (Ti, Cr)N, складають від 2,8 до 4) нм. Виявлено збільшення твердості нанокомпозитного покриття до $32 \pm 1,1$ ГПа. Визначено значення модуля пружності 320 ± 20 ГПа, яке отримане з кривих вантаження-розвантаження. Показано збільшення корозионной стійкості захисних покриттів в кислотних і лужних середовищах в порівнянні з підкладкою з неіржавіючої сталі.

Ключові слова: НАНОКОМПОЗИТИ, ПЛАЗМОВО-ДЕТОНАЦІЙНЕ ОСАД-ЖЕННЯ, ПЛАЗМОВИЙ СТРУМІНЬ, ВАКУУМНО-ДУГОВЕ ОСАДЖЕННЯ, МОДУЛЬ ПРУЖНОСТІ, ШНДЕКС ПЛАСТИЧНОСТІ, КОРОЗІЙНА СТІЙКІСТЬ.

СПИСОК ЛИТЕРАТУРЫ

- 1. A. Gavaleiro, J.T. De Hosson, *Nanostructured Coating* (Berlin: Springer-Verlag: 2006).
- A.A. Voevodin, D.V. Shtansky, E.A. Levashov, J.J. Moore, Nanostructured Thin Films and Nanodispersion Strengherred Coatings, (Dordrecht: Kluwer Academic: 2004).
- 3. S. Veprek, J. Vac. Sci. Tech. A17(5), 2401 (1999).
- 4. Р.А. Андриевский, И.И. Спивак, Прочность тугоплавких соединений и материалов на их основе, 386 (Челябинск: 1983).
- 5. В.М. Береснев, А.Д. Погребняк, Н.А. Азаренков, Успехи физ. мет. 171, 3 (2007).
- В.М. Береснев, А.Д. Погребняк, Н.А. Азаренков, В.И. Фареник, Г.В. Кирик, ФИП 5 №1-2, 4 (2007).
- 7. К.К. Кадыржанов, Ф.Ф. Комаров, А.Д. Погребняк, Ионно-лучевая и ионноплазменная обработка материалов, 640 (Москва: МГУ: 2005).
- А.Д. Погребняк, Ю.Н. Тюрин, УФН 175, 515 (2005) (A.D. Pogrebnyak, Yu.N. Tyurin, *Phys. Usp.* 48, 487 (2005)).
- 9. А.Д. Погребняк, В.В. Василюк, Ю.А. Кравченко, и др., *Трение и износ* 25, 71 (2004).
- А.Д. Погребняк, В.В. Василюк, Д.Л. Алонцева, Ю.А. Кравченко, Ш.М. Рузимов, Ю.Н. Тюрин, *Письма в ЖТФ* 79, 30 (2004) (А.D. Pogrebnyak, V.V. Vasilyuk, D.L. Alontseva, Yu.A. Kravchenko, Sh.M. Ruzimov, Yu.N. Tyurin, *Tech. Phys. Lett.* 30, 164 (2004)).
- A.D. Pogrebnjak, Sh.M. Ruzimov, D.L. Alontseva, P. Zukowski, C. Karwat, C. Kozak, M. Kolasik, *Vacuum* 81, 1243 (2007).
- 12. Л. Фельдман, Д. Майер, Основы анализа поверхности и тонких пленок, 342 (Москва: Мир: 1989)
- 13. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7 No6, 1564 (1992).
- 14. Н.А. Азаренков, В.М. Береснев, А.Д. Погребняк, Структура и свойства защитных покрытий и модифицированных слоев материалов, 565 (Харьков: ХНУ: 2007).
- А.Д. Погребняк, А.П. Шпак, Н.А. Азаренков, В.М. Береснев, УФН 179 №1, 35 (2009) (А.D. Pogrebnjak, А.Р. Shpak, N.A. Azarenkov, V.M. Beresnev, *Phys.*-Usp. 52 No1, 29 (2009)).