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In present work, the exact analytical bound-state solutions of modified Schrödinger equation (MSE) 

with modified extended Cornel potential (MECP) have been presented using both Bopp’s shift method and 

standard perturbation theory in the noncommutative two dimensional real space and phase (NC-2D: RSP), 

we have also constructed the corresponding noncommutative Hamiltonian operator which containing two 

new terms, the first one is modified Zeeman effect and the second is spin-orbital interaction. The theoreti-

cal results show that the automatically appearance for both spin-orbital interaction and modified Zeeman 

effect leads to the degenerate to energy levels to  2 2 1l  sub states. 

 

Keywords: Schrödinger equation, Star product, Bopp’s shift method, Extended Cornel potential. 
 

DOI: 10.21272/jnep.9(6).06006 PACS numbers: 11.10.Nx, 32.30 – r, 03.65 – w 

 

 

                                                             
* abmaireche@gmail.com 

1. INTRODUCTION 
 

The concept of non-relativistic symmetries of the 

Schrödinger Hamiltonian discovered centuries ago 

were recognized empirically in many field of sciences 

for example spectroscopy, atoms, molecules, and nuclei 

by using numerous methods such as quasi-linearization 

method, Hill determinant method, point canonical 

transformation, numerical method, Nikiforov-Uvarov 

method, Laplace Transform method, SUSQM method, 

power series technique and the analytical exact itera-

tion method. The non-relativistic Schrödinger equation 

which describes the motion of spin 1/2 particle has been 

successfully used in solving many physical problems in 

a lot of heavy quarkonium systems and low-energy 

physics [1-5]. Recently, the symmetries were extended 

to new space-phase known by noncommutative space 

and phase  to obtain profound interpretation in Nano 

and plank’s scales, much work in case of the noncom-

mutative space-phase at two, three and N generalized 

dimensions has been done for solving the three funda-

mental equations [6-10] and in particularly, our previ-

ously works [11-18] . The notions of noncommutativity 

of space and phase developed on based to the Seiberg-

Witten map, Bopp's shift method and the star product, 

defined on the first order of two infinitesimal parame-

ters antisymmetric    2 , ,ijk
kk

      as 

( 1 c ) [6-11]: 
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Thus, the noncommutativity commutators of the co-

ordinates 
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The simplest case corresponds to ij and ij   being con-

stants, which we call non-dynamical or     NC spac-

es-phases. It’s important to notice, that the Bopp’s shift 

method will be apply in this paper instead of solving the 

MSE with star product, the SE will be treated by using 

directly usual commutators on quantum mechanics, in 

addition to the following two commutators [10-14]: 
 

 ˆ ˆ ˆ ˆ, and , .iji j ij i jx x i p p i           (3) 

 

In this paper we are using noncommutative theories 

in (NC: 2D-RSP) model to find out what will happen for 

2D nonrelativistic spectrum if effects of noncommuta-

tivity of both space and phase are considered for MECP 

that governs the new extended Cornell potential 

 ˆnc mecV r : 
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On based of two main references [4] and [14], to dis-

cover the new spectrum of energy and a possibility of 

obtain new applications in different fields (  rV  is giv-

en in the next section). The rest of present search is 

organized as follows: In next section, we give briefly 

review to the SE with ECP in 2D spaces. In section 3, 

we shall briefly introduce the fundamental concepts of 

Bopp's shift method and then we apply this method to 

derive the MECP and the corresponding noncommuta-

tive (spin-orbital and new Zeeman) Hamiltonians oper-

ators and the corresponding two spectrums by applying 

perturbation theory for ground stat and first excited 

states. In section 4, we conclude the global noncommu-

tative Hamiltonian and we resume the global spectrum 
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for MECP in first order of two infinitesimal parame-

ters’   and   in (NC-2D: RSP) symmetries. Next, we 

calculate the mass spectra of heavy quarkonia in the 

2D space-phase. Finally, the important found results 

and the conclusions are discussed in the last section. 

 

2. REVIEW OF THE EIGENVALUES AND 

EIGNENFUNCTIONS FOR MECP IN 2D  
 

In this section, we shall review the eigenvalues and 

eignenfunctions for spherically symmetric for the po-

tential known by ECP in 2D spaces [4-5]:  
 

   2

2
.

c d
V r ar br

r r
     (5) 

 

The four parameters: a , b , c  and d  are constants, 

the above confining interaction potential consisting of a 

sum of harmonic, linear, Coulombic and pseudohar-

monic potential terms, the last term is incorporated 

into the quarkonium potential for the sake of coherence 

while the rest terms represents the Cornell potential 

,the complex eignenfunctions  ,r  in 2D space for 

above potential satisfied the SE in spherical coordi-

nates  is [4]: 
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where   and l  are the reduced mass of the two parti-

cles and the angular quantum number, respectively 

while lnE ,  is the total energy of the particle. Now, in-

serting the new form of  ,r  [4]: 
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Eq. (6) reduces to [4]: 
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With the simplifications    dcbaEdcba nlnl ,,,,2,,,, 1111    

and then, the complete normalized wave functions and 

corresponding energies for 
th

n  excited state in 2D 

space, respectively [4]: 
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where dll 84' 2   and ( 0N , 1N ) are two normalized 

constants.  

3. NONCOMMUTATIVE PHASE-SPACE HAMIL-

TONIAN OPERATOR FOR MECP  

 

3.1 Formalism of Bopp’s Shift  
 

In this sub-section, on based to our previously 

works [15-18], we give a brief review to the fundamen-

tal principles of modified Schrödinger equation in (NC-

2D: RSP), to achieve this goal we apply the important 

4-steps on the ordinary SE: 

- we replace ordinary 2D Hamiltonian operator 

 ii xpH ,ˆ  by noncommutative new Hamiltonian opera-

tor  ii xpH ˆ,ˆˆ , 

- we replace ordinary complex wave function  r  

by new complex wave function  r


 , 

- we replace ordinary energy lnE ,  by noncommuta-

tive energy ncE , 

- the forth step correspond to replace the ordinary 

old product by new star product. 

Which allow us to constructing the modified SE in 

(NC-2D: RSP) symmetries as:  
 

      ˆ ˆ ˆ, .i i ncH p x r E r    (10) 

 

The Bopp’s shift method allows finding the reduced 

following SE without star product: 
 

      ˆ ˆ, ,i i ncH p x r E r    (11) 

 

the modified Hamiltonian  ii xpH ˆ,ˆ  defined as a func-

tion of two operators ix̂  and ip̂ : 
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i
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the modified 2D potential  rV mecpnc
ˆ

  obtained by the 

following procedure: 
 

   2

2
ˆ ˆ ˆ .

ˆ ˆ
nc mecp

c d
V r ar br

r r
       (13) 

 

the two operators ix̂  and ip̂ in (NC-2D: RSP) symme-

tries  are given by [14-18]:  
 

 ˆ ˆ  and .
2 2

ij
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ij
x x p p p x

i i


      (14) 

 

On based to our references [15-18], we can write the 

two operators 
2r̂  and 2p̂  in NC 2D spaces and phases 

as follows:  

2 2
2 2ˆ

ˆ     and           .
2 2 2

z
z

Lp p
r r L




  
    (15) 

 

After straightforward calculations one can obtains 

the different terms in (NC-2D: RSP) as follows: 
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2 2

3 2 2 4
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2
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Which allow us to writing the modified 2D potential 

 rV mecpnc
ˆ

  in (NC-2D: RSP) symmetries as follows: 

 

   2

2
ˆ , , .nc mecp pert

c d
V r ar br V r

r r
         (17) 

 

It’s clearly that, the first 4-terms in eq. (17) repre-

sent the ordinary ECP while the rest term   ,,rVpert  

is produced by the deformation of space and phase. The 

global perturbative potential operators   ,,rV mceppert  

for studied potential MECP in (NC-2D: RSP) symme-

tries will be written as: 
 

  4 3
, , .

2 22

z
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3.2 The Spin-orbital Noncommutative Hamilto-

nian for MECP in (NC: 2D- RSP) 
 

In order, to discover the new contribution of MECP, 

we replace the two couplings zL and zL  

by SL and LS , respectively, then the above per-

turbed operator becomes as: 
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Here S  denote the spin of a quarkonium system. 

Now, we replace the spin-orbital interaction S


L  by 
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2
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1
SLJG  to obtain the new physical 

form: 
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As it well known, (
2

J ,
2

L , 
2

S and )zs  formed com-

plete basis on quantum mechanics, then  the operator 
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1 lj   respectively (for 1 / 2s  ). Then, one can 

form a diagonal matrix ecpsoH m
ˆ

  of order  22 , with 

non null elements  
11m

ˆ
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22m
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ecpsoH   for 

MECP in (NC-2D: RSP) symmetries:  
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After profound straightforward calculation, one can 

show that, the radial function  rn   satisfied the fol-

lowing differential equation for MECP in (NC-2D: RSP) 

symmetries: 
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3.3 The Exact Spectrum of Ground States Pro-

duced by NC Spin-orbital Hamiltonian 

ˆ
so mecpH   for MECP in (NC: 2D- RSP) Symme-

tries 
 

Now, the aim of this subsection is to obtain the 

modifications to the energy levels for ground states 
 

 dcbaE ,,,mecp-u  and  dcbaE ,,,mecp-d  

 

for spin up and spin down, respectively, at first or-

der of two parameters   and . In order to achieve this 

goal, we apply the standard perturbation theory: 
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Where a 2  and
1'
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c
 , a direct simplifica-

tion gives: 
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Where, the five terms  5,1iTi  are given by: 
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In order to obtain the above integrals, we applying 

the following special integration [19]: 
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Where 
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D  denote to the Parabolic cylinder 

functions function,    Gamma function   0Re l  

and  0Re l . After straightforward calculations, we 

can obtain the explicitly results:   
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Inserting the above expressions into equations (22) 

and (23), one obtains the following results for exact 

modifications of ground states  dcbaE ,,,mecp-u  and  

 dcbaE ,,,mecp-d  produced by new spin-orbital effect for 

MECP: 
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Where the two factors 0ncT  and pncT 0  are given 

by: 
4
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1
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It’s important to notice that the above two terms 

sncT 0  and pncT 0  are represent the noncommutative 

geometry of space and phase, respectively. 

 

3.4 The Exact Spectrum of First Excited States 

Produced by Noncommutative Spin-orbital 

Hamiltonian mecpsoH 
ˆ  for MECP in (NC: 3D- 

RSP) 
 

The aim of this subsection is to obtain the new mod-

ifications to the energy levels for first excited states 

 u--mecp1 1, , , ,E n a b c d  and  dcbanE ,,,,1-mecp1-d   corre-

sponding spin up and spin down, respectively at first 

order of two parameters   and   for MECP which are 

obtained by applying the standard perturbation theory 

as: 
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Where ( ' , ' ) are equals ( 2 a , 2
2
b
a

 )and then 

a direct simplification to the above equations (31) and 

(32) gives: 
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Where, the 15- terms  15,1iLi  are given by: 
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In order to obtain the results of above equations, we 

apply the special integral which represents by eq. (28): 
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The above obtained explicitly results allow us to get-

ting the exact modifications  
 

  u--mecp1 1, , , ,E n a b c d  

and  

  d--mecp1 1, , , ,E n a b c d   

 

of degenerated first excited states corresponding two 

polarized states produced by new spin-orbital Hamilto-

nian operator ˆ
so mecpH  : 
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Where the two factors 1ncL   and 1nc pL   are given by 

the following form, respectively: 
 

 
12 15
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1 13
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i i

L L L L 
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3.5 The Exact Spectrum Produced by Non-

commutative Magnetic Hamiltonian mecpmH 
ˆ  

for MECP in (NC: 2D- RSP) Symmetries 
 

On other hand, it’s possible to found another auto-

matically symmetry for MECP related to the influence 

of an external uniform magnetic field, generated from 

the effect of the new geometry of space and phase, it’s 

deduced by the two following two replacements: 
 

      and           B B     (47) 
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Here   and   are infinitesimal real two propor-

tional’s constants and to simplified the calculations we 

choose the magnetic field kBB   and then we can 

make the following translation: 
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Which allow us to introduce the modified new mag-

netic Hamiltonian ˆ
m mecpH   in (NC-2D: RSP) for MECP 

as:  
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Here ˆ
zH SB   denote to the ordinary operator of 

Hamiltonian for of Zeeman Effect in quantum mechan-

ics. To obtain the exact noncommutative magnetic mod-

ifications of energy (  mag-0 0, , , , ,E n m a b c d , 

 mag-1 1, , , , ,E n m a b c d ) for MECP we just replace the 

3-parameters k ,   and   in the Eqs. (30) and (34) by 

the following new parameters  m  ( l m l    ),   and , 

respectively: 
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Where  mag-0 0, , , , ,E n m a b c d  and 

 mag-1 1, , , , ,E n m a b c d  are the exact magnetic modifi-

cations of spectrum corresponding the ground states 

and first excited states, respectively. It should be noted 

that coefficients  1,4iT i   and  1,15iL i   are the 

same as those found in our reference [14].  

 

4. THE NEW GLOBAL EXACT SPECTRUM OF 

LOWEST EXCITED STATES FOR MECP IN 

(NC-2D: RSP) PRODUCED BY THE DIAGO-

NAL ELEMENTS OF NONCOMMUTATIVE 

HAMILTONIAN OPERATOR ˆ
nc mecpH   

 

It’s clearly, that the obtained previous results which 

are presented by Eqs. (30), (44), (45), (50) and (51) of 

eigenvalues of energies are reels and then the non-

commutative diagonal Hamiltonian operator ˆ
nc mecpH    

will be Hermitian operator. Furthermore, we can ob-

tain the explicit physical form of this operator on based 

to the results (21) and (49) for MECP, its represent by 

diagonal noncommutative matrix of order  2 2 , with 

elements  
11

ˆ
nc mecpH   and  

22

ˆ
nc mecpH   in (NC-2D: RSP) 

symmetries: 
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 (53) 

 

Now we find the corresponding global modified en-

ergies (  nc u0 , 0, , , , , , ,E n l m s a b c d  - 

 nc  d0 0, , , , , , ,E n l m s a b c d ) and 

(  nc u1 1, , , , , , ,E n l s m a b c d  - 

 nc  d1 1, , , , , , ,E n l s m a b c d ) for ground and first excited 

states of a particle fermionic with spin up and spin 

moving in the MECP, referring to Eqs. (30), (44), (45), 

(50) and (51), we find the results as follows: 
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and 
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and 
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As it’s mentioned in our previously works [14-18], 

the atomic quantum number m  can be takes ( 2 1l  ) 

values and we have also two values for
1

2
j l  , thus 

every state in usually 2D space of MECP will be in 

(NC-2D: RSP):  2 2 1l  sub-states. As it well known, 

the eigenvalues j  of the total operator J L S   can 

be obtains from the interval l s j l s    , which al-

low us to obtaining the eigenvalues 

 , , ( 1) ( 1) ( 1)k j l s j j l l s s       of the opera-

tor  2 2 2
J L S  , thus, by substituting k  by  , ,k j l s  

into Eqs. (56) and (58) to obtain 

 nc mecp0 0, , , , , ,E n l s a b c d  and 

 nc mecp1 1, , , , , ,E n l s a b c d  for ground state and first 

excited states: 
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5.  MASS SPECTRA OF HEAVY QUARKONIA IN 

2D SPACE-PHASE 
 

In this section, the properties of charmonium meson 

and bc  meson are calculated, in which the quarkonium 

meson have quark and antiquark masses. The follow-

ing relation [4, 20] is used for determining quarkonium 

masses in the 2D space-phase: 
 

 2
q nl q nc ecpq q

M m m E M m m E          (60) 

 

By substituting Eq. (57) into Eq. (29), the quarkoni-

um mass in 2D space takes the following form: 
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Where M is the ordinary masse in commutative 

quantum mechanics for the case of 2N  , thus, the 
charmonium mass c mecpM   is given by: 
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  (62) 

 

where cM is the ordinary masses in commutative space 

for the case of 2N . It is important to notice, the ap-

pearance of the polarization states of a quarkonium  

system indicates the validity of the results at high en-

ergy where the Dirac equation applied, which allowing 

to the validity to results of present search on the 

Plank’s and nano scales level. If we make the lim-

its    0,0, kk   we obtain al results of ordinary 

quantum mechanics. 

 

6. CONCLUSIONS  
 

In this article, we have investigated the solutions of 

the MSE for MECP. We showed the obtained degener-

ated spectrum for the modified studied potential de-

pended by new discrete atomic quantum numbers: 

sljsl   and m  of electron, we have obtained 

the new masses of charmonium meson and cb  meson. 

The new results indicate that, the MSE can be valid on 

the Plank’s and Nano scales. 
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