Тонкие пленки аморфных молекулярных полупроводников для создания поверхностных темплатов упорядоченных структур

М.Ю. Барабаш*, В.Е. Мартынчук, Р.В. Литвин

Технический центр НАН Украины, ул. Покровская, 13, 04070 Киев-070, Украина

(Получено 30.01.2017; опубликовано online 28.04.2017)

В работе предложен новый подход к формированию электретных темплатов в электрофотографическом процессе и сформирован темплат площадью ~ 1 см ² с периодом ~ 2 мкм электрофотографическим методом при экспозиции пленки нанокомпозитного фотопроводника голограммой. Разработана методика изготовления двумерных периодических металл-диэлектрических структур темплатным методом при экспозиции световым полем голограммы с периодом 0.8-6 мкм и высотой рельефа 3.5-650 нм. Показано, что на поверхность описанного электретного темплата возможно осаждение чрезвычайно широкого круга органических и неорганических соединений в вакууме, с газовой и жидкой фаз.

Ключевые слова: Аморфные молекулярные полупроводники, Электретный темплат, Нанокластер, Електрическое поле, Нанокомпозит.

DOI: 10.21272/jnep.9(2).02020

PACS numbers: 78.20.Jq, 78.20.Ls, 78.66.Jg

1. ВВЕДЕНИЕ

Проблема структурирования материалов в наномасштабе, в частности организация процессов упорядочения нанообъектов с помощью темплатов (шаблонов), является одним из основных направлений развития нанотехнологий. Темплат является инструментом для организации в пространстве и времени физико-химических процессов структурирования нанообъектов на поверхности материалов различной природы за счет ближнеполевого взаимодействия нанообъектов со структурой темплата. Предложена методика [1] формирования темплата на основе фоточувствительных пленок аморфных молекулярных полупроводников (АМП) с использованием лазерной литографии. Тонкие пленки фотопроводящих материалов можно рассматривать как среду, а электрофотографический процесс - как инструмент для формирования темплатов. Такие наноструктуры образуются на поверхности темплатов различной природы за счет ближнеполевого [2, 3] взаимодействия нанообъектов со структурой темплата. Высокая фотопроводимость тонкопленочного материала необходима для формирования пространственного распределения фототока в соответствии с интенсивностью экспонирующего светового поля, которое задает топологию и размеры тамплата [1]. Важным параметром является и время диэлектрической релаксации захваченного в ловушки заряда, который определяет максимальный термин между формированием электретного состояния пленки и осаждением функциоанализирующих соединений на поверхность темплата. Встроенный в пленку заряд способствует образованию геометрического рельефа поверхности и формированию нанокластеров золота при напылении на поверхность темплата [4]. Методами сканирующей силовой микроскопии и оптической микроскопии показано, что формирование нанокластеров золота происходит в определенных пространственно упорядоченных областях поверхности

темплата.

Цель работы – разработка темплатных методов самоорганизации наноструктур, создания темплатов с электростатическим зарядом с использованием пленок фоточувствительных аморфных полимерных полупроводников.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Пленки АМП толщиной 1 мкм были нанесены из раствора на стеклянную подложку с прозрачным электропроводящим покрытием SnO₂. Создание геометрического рельефа на пленках АМП, включает равномерную зарядку поверхности АМП, экспонирование светового поля, быстрый нагрев пленки до температуры вязкого течения, при пропускании импульса тока через электропроводящее покрытие, с естественным охлаждением пленки до комнатной температуры. На её поверхности образуются деформации, характер которых пропорциональны оптической плотности светового поля. Электростатический заряд осаждали на поверхность пленки в коронном разряде и экспонировали заданное световое поле (рис. 1). Измеряли потенциал свободной поверхности при образовании геометрического рельефа АМП.

2077-6772/2017/9(2)02020(6)

^{*} mbarabash@nasu.kiev.ua

Рис. 1 – Схема формирования на поверхности темплатов системы упорядоченно расположенных золотых кластеров: экспозиция голограммой заряженной пленки фотопроводника (а), образования захваченных зарядов при экспозиции (б), адсорбция золота в пучностях электрического поля при напылении золота в вакууме и образования золотых кластеров (в), сканирование поверхности пленки, топология светового поля (г), которое экспонирует фотопроводник, (сканирующая атомно-силовая микроскопия (ACM) поверхности фотопроводящего полимера) [1]

Затем прекращали нагрев пленки АМП после уменьшения заряда на заданную величину, контролируя величину геометрического рельефа, измеряя интенсивность света в первом порядке дифракции и температуру пленки АМП. Световое поле создавалось путем многолучевой интерференцией лазерного излучения. Такой режим образования геометрического рельефа пленки АМП, обеспечивал получение темплатов со стабильными параметрами (величинами геометрического рельефа и встроенного заряда). Пленки АМП позволяют проводить циклическую запись (~100 раз) светового поля, корректируя его параметры. Режим образования геометрического рельефа пленки АМП составлял несколько секунд. Параметры темплата контролировали с помощью оптической и микрозондовой электронной микроскопии.

В качестве функциоанального материала для формирования шаблона было выбрано золото путем испарения его на поверхность темплата. Учитывалось высокая поляризуемость его атомов в электрическом поле, стабильность в обычных условиях, несложность вакуумного осаждения и простоту исследования его тончайших слоев доступными методами. Напыления золота проводили термическим методом при давлении остаточных газов ~ 10⁻⁴ Па испарением с танталовой лодочки. Время сохранения образца в темноте между операциями формирования электретного состояния и конденсацией золота в вакууме составлял 3 суток. Исследование образцов проводили по схеме на просвет на оптическом микроскопе Биолам при увеличении 800. Морфологию поверхности изучали на сканирующем атомно-силовом микроскопе (ACM) NanoScope IIIa в периодическом контакте кремниевым зондом с номинальным радиусом закругления острия 10 нм.

3. ФОТОПРОВОДЯЩИЕ МАТЕРИАЛЫ ДЛЯ ТЕМПЛАТОВ

Аморфные молекулярные полупроводники на основе сенсибилизированных фотопроводящих поли-

меров имеют фотопроводящие свойства в видимом и ближнем к инфракрасному волновых диапазонах [5, 6]. Причиной этого является то, что молекулы сенсибилизаторов действуют не только как центры поглощения света, а также обеспечивают внутримолекулярный перенос заряда при фотогенерации. Такие свойства АМП дают возможность использовать их в развитии микроэлектронных и информационных систем [5-8]. Хорошо изученными и широко используемыми АМП является АМП на основе поли-N-винилкарбазола (ПВК), поли-Nепоксипропилкарбазола (ПЭПК), полиантрацелинглицидилового эфира $(\Pi A \Gamma E),$ поли-Nглицидилкарбазола (ПГК), карбазолсодержащих полиорганосилоксаны (КСПО). Фоточувствительность этих АМП обусловлена наличием в них карбазольных ядер, имеющих большую закрытую сопряженную π – электронную систему, регулярностью их структуры и плотности упаковки. Известно [6, 9-11], что в ряде структур ПВК (ПЭПК) – ПГК – КСПО реализуется постепенное увеличение расстояния между карбазольными ядрами за счет увеличения количества атомов в звеньях основной полимерной цепи, которыми соединяются соседние мономерные звенья. Увеличение расстояния между карбазольными ядрами в полимерной цепи приводит к росту его гибкости и одновременно к улучшению условий для образования комплексов с переносом заряда (КПЗ). В АМП образованных на основе ПГК и ПАГЕ структура цепи остается практически неизменной, а изменяется только вид донорного включения. Переход от донорных ядер карбазола к заменителям с более протяженной системой (связанных) связей уменьшает энергию ионизации донора и, следовательно приводит к расширению спектральной чувствительности АМП.

В качестве сенсибилизаторов обычно используются соединения 2, 4, 7 – тринитро (ТНФ), 2, 4, 5, 7 – тетранитрофлюоренон (ТЕНФ), кислоты 2, 4, 7 – тринитро – 9 – дицианометиленфлюорен – 4 – карбоксилику (КТНФДЦМК), тетрацианоквинодиметана (ТЦНК) андецилика эфира кислоты 2, 7 – динитро (АЕКДДМФК), фуллерены С₆₀ и С₇₀. Использование перечисленных АМП позволяет синтезировать светочувствительные материалы, область спектральной чувствительные материалы, область практически весь видимый диапазон.

4. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Были получены, темплаты на основе АМП (ПЭПК) с геометрическим рельефом двух видов (рис. 2 а, б). Размер поверхности темплата для синусоидального рельефа 20 × 20 мм, для гексагонального темплата ребро 15 мм. Темплаты с синусоидальным и гексагональным рельефом период составлял 2 мкм, а глубина 150 нм. Синусоидальный рельеф создавался при экспонировании поверхности АМП двумя лазерными пучками интенсивностью 100 мкВт/см².

Ж. нано- електрон. ФІЗ. 9, 02020 (2017)

Рис. 2 – Рельеф поверхности пленок АМП: поверхность с синусоидальным рельефом (а), поверхность пленки АМП с гексагональной топологией (б) [12]

Гексагональный рельеф был создан при экспонировании поверхности АМП тремя лазерными пучками интенсивностью 100 мкВт/см². Дифракционная картина приведена на рис. 3.

Рис. 3 – Дифракционная картина гексагональной топологии поверхности АМП [12]

На рис. 4 показано изменение потенциала свободной поверхности пленки АМП, температуры, развития геометрического рельефа при ее нагреве после зарядки и экспонирование светового поля. Приведена релаксация потенциала свободной поверхности пленки АМП (кривая 2) с заранее созданным отрицательным объемным зарядом. Исследование релаксации (рис. 4) поверхностного потенциала и развития геометрического рельефа поверхности АМП показали, что в АМП при температурах несколько ниже температуры (70 °C) образования геометрического рельефа, в результате тепловой ориентационной поляризации АМП [13], образуется термостимулированный гетерозаряд (TC3) не подверженный фотоактивации, величина которого пропорциональна начальному заряду. Кинетика релаксации поверхностного потенциала существенно зависит от величины и знака, предварительно созданного в объеме АМП электрического заряда. Это позволило выделить на кривой релаксации поверхностного потенциала три характерных участка. На первом происходит преимущественное образование объемного заряда без заметной релаксации поверхностного, на втором - происходит в основном релаксация поверхностного заряда, на третьем – окончательная релаксация поверхностного и объемного зарядов. Значение ТСЗ зависит от температуры, величины и знака заряда на поверхности АМП, и влияет на кинетику релаксации поверхностного заряда (кривая 1). Найдено значение оптимальной температуры (80 °C) и времени образования TC3 (20 мсек) при данной мощности нагрева. Можно предположить, что на первом участке движение носителей дырочного тока происходит по дисперсионному механизму, который затем переходит в механизм движения носителей контролируемого захватом в мелкие ловушки [9]. При регистрации световых полей в условиях образования ТСЗ было установлено, что полоса передаваемых частот совпадает с полосой обычного способа регистрации, паразитные полосы отсутствуют.

Рис. 4 – 1 – изменение потенциала поверхности пленки АМП при её нагреве без предварительно созданного ТСЗ, 2 – изменение потенциала поверхности пленки АМП при её нагреве с предварительно созданным ТСЗ, 3 – релаксация ТСЗ, 4 – развитие рельефа на поверхности АМП, 5 – температура АМП [1]

В результате вакуумного термического напыления золота на поверхность темплата формируется структура рис. 5, б, которая является системой пространственно упорядоченных золотых островков. Обращает внимание тот факт, что золото конденсируется в определенных четко локализованных областях, а не равномерно распределяется поверхностью. Следует ожидать, что при напыленные золота на рельефную поверхность, золото также будет конденсироваться на дне лунок, но этого не произошло. Сравнение рис. 5, а и б позволяет сделать вывод, что расположение и симметрия нанесенных напылением нанокластеров золота задаются топологией светового поля (голограммы), которое было использовано для формирования темплата.

Поверхность полимерного темплата имеет периодический рельеф высотой ~ 350 нм рис. 5-6, тогда как темплата со слоем золота 500 нм. Таким образом, можно примерно определить средние размеры золотых островков: диаметр составляет 400-600 нм, высота-150 нм.

Рис. 5 – Трехмерное изображение рельефа поверхности пленки, полученное методом ACM: рельеф полимерной пленки после записи голограммы (а), (б) рельеф поверхности после нанесения золота на полимерную пленку (а). Масштаб горизонтальный 5 мкм/дел., вертикальный – 1000 нм/дел [1]

Рис. 6 – Рельеф поверхности образцов полимерной пленки, полученные методом ACM: рельеф полимерной пленки после записи голограмм (а), рельеф поверхности после нанесения золота на полимерную пленку (б) [1]

Сопоставляя топологии экспонирующего светового поля, которая визуализируется в виде профиля рельефа поверхности рис. 4 а и рис. 5 а, с топологией золотого осадка рис. 5 б и рис. 6 б. Можно сделать вывод, что золотые островки формируются на гребнях рельефа, соответствующих максимальной напряженности поля ТСЗ. Электрическое поле ТСЗ со значительным градиентом напряженности локализовано вблизи поверхности темплата, захваченного в фотопроводящей пленке при предварительным нагревом. В области лунок золотые кластеры не осаждаются (см. рис. 5 б и рис. 6 б).

Напряженность электрического поля в этих областях оценивалось из дополнительных экспериментов по методике [14] путем сопоставления дифракционных эффективностей синусоидальных рельефов, сложившихся в поле поверхностного и локализованного объемного зарядов. Таким образом, было получено оценку среднеарифметическому потенциалу поверхности пленки в электретном состоянии 6 В. Следовательно максимальный потенциал на поверхности пленки в предположении синусоидального распределения оценивается в 12 В при толщине пленки 820 нм и периоде сформировавшейся структуры ~ 2.1 мкм. Диэлектрическая проницаемость нанокомпозита может быть оценена как квадрат показателя преломления, типичное значение которого для карбазолсодержащих полимеров составляет 1.4 [6]. Таким образом, напряженность электрического поля, локализованного в толщине пленки, можно оценить в 150 МВ/м, а вблизи ее поверхности в 120 МВ/м. Используемые для оценки макроскопические электростатические представления не учитывают атомное строение центров локализации зарядов, поэтому приведенные данные являются в определенном смысле усредненными и могут рассматриваться как оценка напряженности электрического поля снизу. Несмотря на это, указанные электрические поля сопоставимые с внутримолекулярными и, безусловно, могут вызывать значительные поляризационные эффекты у атомов, молекул и наноклестеров широкого класса соединений.

Плотность энергии электростатического поля описанного электрета составляет около $1\cdot10^5$ Дж/м ³ или 10^4 эВ на ячейку поверхностной решетки, что существенно больше kT. Реализованный процесс имеет значительный энергетический потенциал.

Можно предположить следующие механизмы самоупорядочения золота во время термического напыления в вакууме на поверхность темплата: транспорт заряженных или поляризованных нанообъектов и фазообразования на поверхности в неоднородном электрическом поле. Транспорт атомов и кластеров молекулярного пучка золота в локальном электрическом поле вблизи поверхности создает электрокинетический эффект [15]. Возникновение у атомов золота дипольных моментов и соответствующих сил, которые втягивают атомы и наночастицы в области градиента электрического поля темплата при напылении может приводить к транспорту атомов золота в области поверхности, где локализован заряд, в которых и происходят явления формирования твердой фазы из пара.

В приведенном технологическом эксперименте объем и размеры осажденных золотых нанокластеров определялись количеством конденсированного на поверхности темплата золота, которая может варьироваться в пределах от адсорбированного слоя до нескольких микрон. Этот факт свидетельствует о существенной селективности фазообразования на поверхности темплата, поскольку при толщине золотого осадка несколько десятков нанометров неоднородное электрическое поле экранируется и трансТонкие пленки аморфных молекулярных полупроводников...

Ж. нано- електрон. ФІЗ. 9, 02020 (2017)

порт становится пространственно однородным.

Наименьший период сложившейся голографическим методом структуры составляет половина длины волны при встречном распространении лазерных лучей.

5. ВЫВОДЫ

Разработана методика изготовления двумерных периодических металл-диэлектрических структур темплатным методом при экспозиции световым полем голограммы с периодом 0.8 – 6 мкм и амплитудой рельефа 3.5 – 650 нм. Такие пленки могут работать в циклическом режиме, обеспечивая возможность изменения параметров темплата в широких пределах.

Показано, что расположение и симметрия осажденных на поверхность электретного темплата нанокластеров золота, полученных напылением в вакууме, задаются топологией светового поля голограммы, которое было использовано для формирования темплата.

Предложенный механизм самоупорядочения во время термического напыления в вакууме на поверхность темплата, заключающийся в электрокинетическом движении атомов или кластеров молекулярного пучка в локальном электрическом поле вблизи поверхности и их адсорбции на поверхности пленки с образованием твердой фазы. Напряженность электрического поля в областях осаждения на поверхности темплата ~ 120 MB/м.

На поверхность описанного электретного темплата возможно осаждение чрезвычайно широкого круга органических и неорганических соединений в вакууме, с газовой и жидкой фаз.

Thin Films of Amorphous Molecular Semiconductors for Generating Surface Templates of Regulated Structures

M.Yu. Barabash, V.E. Martynchuk, R.V. Litvin

Technical Centre National Academy of Science of Ukraine, 13, Pokrovskaya Str., 04070 Kiev, Ukraine

In this paper we propose a new approach to the formation of the electret templates by electrophotographic process and perform the 1 cm^2 template with a period of ~ 2 microns formed by electrophotographic method of nanocomposite photoconductor film exposure by hologram. A methodic for obtaining of twodimensional periodic metal-dielectric structures by template method of hologram light field exposure with a period of 0.8-6 mm and a relief height 3.5-650 nm is developed. The possibility of extremely wide range of organic and inorganic compounds in a vacuum, with gas and liquid phases deposition on the surface of the described electret template is shown.

Keywords: Amorphous molecular semiconductors, Electret template, Nanoclusters, Electric field, Nanocomposite.

Тонкі плівки аморфних молекулярних напівпровідників для створення поверхневих темплатів упорядкованих структур

М.Ю. Барабаш, В.Є. Мартинчук, Р.В. Литвин

Технічний центр НАН України, вул. Покровська, 13, 04070 Київ-070, Україна

У роботі запропоновано новий підхід до формування електретних темплатів у електрофотографічному процесі і сформований темплат площею ~ 1 см 2 з періодом ~ 2 мкм електрофотографічним методом при експозиції плівки нанокомпозитного фотопровідника голограмою. Розроблено методику виготовлення двовимірних періодичних метал-діелектричних структур темплатним методом при експозиції світловим полем голограми з періодом 0.8-6 мкм і висотою рельсфу 3.5-650 нм. Показано, що на поверхню описаного електретного темплату можливо осадження надзвичайно широкого кола органічних і неорганічних сполук у вакуумі, з газової і рідкої фаз.

Ключові слова: Аморфні молекулярні напівпровідники, Електретний темплат, Нанокластер, Електричне поле, Нанокомпозит.

СПИСОК ЛИТЕРАТУРЫ

- М.Ю. Барабаш, Д.О. Гринько, С.О. Сперкач, Формування наноструктур на темплатах випромінюванням із видимого діапазону (Киев: ИМФ НАНУ: 2015) (М.Yu. Barabash, D.O. Hryn'ko, S.O. Sperkach, Formuvannya nanostruktur na templatakh vyprominyuvannyam iz vydymoho diapazonu (Kyev: IMF NANU: 2015)).
- Ю.Д. Третьяков, Красная книга микроструктур новых функциональных материалов (Москва: МГУ им. М.В. Ломоносова: 2006) (Yu.D. Tret'yakov, Krasnaya kniga mikrostruktur novykh funktsional'nykh materialov (Moskva: MGU im. M.V. Lomonosova: 2006)).
- H.S. Nalwa, Encyclopedia of Nanoscience and Nanotechnology 1, (2004).
- Д.А. Гринько, Ю.М. Барабаш, Е.Г. Борщаговский и др., *II Міжнародна конференція «Нанорозмірні системи:* будова, властивості, технології» (Кнїв: 2007) (D.A. Hryn'ko, Yu.M. Barabash, E.H. Borshchahovskyy y dr., II Mizhnarodna konferentsiya «Nanorozmirni systemy: budova, vlastyvosti, tekhnolohiyi» (Kyiv: 2007)).
- Н.Г. Кувшинский, И.И. Ляшко, В.И. Стриха, Полимерные полупроводники и голография (Кнев: Знание: 1987) (N.G. Kuvshinskiy, I.I. Lyashko, V.I. Strikha, Polimernyye poluprovodniki i golografiya (Kiev: Znaniye: 1987)).
- Е.Л. Александрова, *Физика и техника полупроводни*ков 38 No 10, 1153 (2004) (Е.L. Aleksandrova, *Fizika i* tekhnika poluprovodnikov 38 No 10, 1153 (2004)).
- M. Baibarac, P. Gomez-Romero, M. Lira-Cantu, N. Casan-Pastor, N. Mestres, S. Lefrant, *Eur. Polymer J.* 42, 2302 (2006).
- K. Napo, S. Chand, J.C. Bernéde, G. Safoula, K. Alimi, J. Mat. Sci. 40 (2005).
- М. Поуп, Ч. Свенберг. Электронные процессы в органических кристаллах. Т. 2 (Мнр.: Москва: 1985) (М. Poup, Ch. Svenberg. Elektronnyye protsessy v orga-

nicheskikh kristallakh. T. 2 (Mir: Moskva: 1985)).

- L. Valkunas, V. Gubinas, A. Undzenas, Proc. Int Conf. Electronic Processes in Organic Materials 22B, (1998).
- М.В. Курик, Э.А. Силинып, В. Чапек, Электронные состояния органических молекулярных кристаллов (Зинатне: Рига: 1988) (М.V. Kurik, Е.A. Silin'sh, V. Chapek, Elektronnyye sostoyaniya organicheskikh molekulyarnykh kristallov (Zinatne: Riga: 1988)).
- 12. М.Ю. Барабаш, II Міжнародна наукова конференція Збірник наукових праць конференції «Фізико-хімічні основи формування і модифікації мікро- і наноструктур» (ФММН-2008), 235 (Харків: 2008) (М.Yu. Barabash, II Mizhnarodna naukova konferentsiya Zbirnyk naukovykh prats' konferentsiyi «Fizyko-khimichni osnovy formuvannya i modyfikatsiyi mikro- i nanostruktur» (FMMN-2008), 235 (Kharkiv: 2008)).
- В.А. Каргин, Органические полупроводники (М. Наука 1968) (V.A. Kargin, Organicheskiye poluprovodniki (М. Nauka 1968)).
- 14. Ю.М. Барабаш, Д.А. Гринько, М.А. Заболотный, Н.Г. Находкин и др., Голографический способ исследования и контроля фотоэлектретных свойств фототермопластических материалов на основе полимерных полупроводников (Авт.Св. СССР №1089549, от. 3.01.1984 г) (Yu.M. Barabash, D.A. Grin'ko, М.А. Zabolotnyy, N.G. Nakhodkin i dr., Golograficheskiy sposob issledovaniya i kontrolya fotoelektretnykh svoystv fototermoplasticheskikh materialov na osnove polimernykh poluprovodnikov (Avt.Sv. SSSR №1089549, ot. 3.01.1984 g)).
- Физический энциклопедический словарь (М.: Советская энциклопедия: 1984) (Fizicheskiy entsiklopedicheskiy slovar' (М.: Sovetskaya entsiklopediya: 1984)).