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Fe doped SnO2 transparent thin film nanostructures were grown by chemical solution deposition and 

its electric field induced resistive switching properties were investigated for non-volatile resistive random 

access memory (RRAM) applications. Simple, low temperature solution process growth of SnO2:Fe thin film 

nanostructures was employed. Grazing incidence X-ray diffraction (GIXRD) and atomic force microscopy 

(AFM), respectively, confirmed a phase pure cubic growth with mono-disperse nanocrystallites of ~ 20 nm. 

Sharp interface with substrate and top metal electrodes were achieved. Reproducible hysteresis in the I-V 

curves with symmetrical resistance switching ratio of more than 4  103 at a low operating voltage of 

± 1.1 V has been demonstrated. Large values of memory retention of about 5 moths; confirmed the non-

volatile behaviour of the device cell consisting of Ag/SnO2:Fe/Ag planar structure. A mechanism involving 

the space charge limited current combined with Schottky conduction at the metal/oxide interface is pro-

posed. A possible mechanism of the formation and rupture of conducting filament is proposed based on the 

Joule heating effect with external electron injection at the Ag/SnO2 interface.  
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1. INTRODUCTION 
 

Resistive random access memory (RRAM) is one of 

the candidate technologies for the promising next gen-

eration non-volatile memories with fast switching 

speed, low power consumption, nondestructive read out 

and high scalability [1-3]. The current candidate mate-

rials for RRAM devices include doped perovskites [4-5] 

and binary transition metal oxides such as NiO [6-7], 

TiO2 [8] CuxO [9], ZnO [10], ZrO2 [11], HfO2 [12] etc. 

Compared with ternary or quaternary oxide semiconduc-

tor films such as doped SrZrO3 or (Pr,Ca)MnO3, binary 

metal oxides have the advantage of a simple fabrication 

process and are more compatible with complementary 

metal-oxide semiconductor (CMOS) processing. Further, 

the binary oxides being simple systems set good starting 

point to understand the mechanism governing the elec-

tric pulse induced resistance (EPIR) switching phenom-

ena. Several models based on either the bulk or the in-

terfaces effect, such as the Schottky barrier model, the 

filamentary model, joule heating and the model involv-

ing the dislocations from oxygen content, gross defects 

induced resistance switching etc. have been proposed 

both on experimental and theoretical frameworks [2-3], 

[13-18] although these mechanisms cannot fully explain 

the universal resistance switching (RS) behaviours. In 

addition, several obstacles, such as the compatibility to 

modern semiconductor processes, the uniformity of 

memory behaviour, and the retention property of RRAM 

devices need to be overcome before potential device ap-

plications can be considered. There is therefore a grow-

ing need to explore new binary oxides for RRAM applica-

tions.  

In this paper, the memory retention behaviour of 

transparent Fe doped SnO2 thin films for RRAM appli-

cations are reported. Symmetrical resistance switching 

(RS) with same pair of metal electrodes forming a 

planner Ag/SnO2:Fe/Ag structure using four probe 

method is demonstrated. SnO2 is a transparent wide-

band-gap oxide semiconductor which is applied widely 

in many fields of oxide electronics [19-20], owing to its 

good optical and electrical properties and excellent 

chemical and thermal stability [21]. It is well known 

that widely-used transparent conducting oxide (TCO) 

thin films such as ZnO, SnO2, SnO2:In are n-type be-

cause of the existence of intrinsic defects (oxygen va-

cancies and/or metal interstitials) [19]. Fe2+/3+ substitu-

tion for Sn4+ introduces holes in the system and annihi-

late part of the intrinsic n-type carriers and decreases 

the carrier density. 

 

2. EXPERIMENTAL PROCEDURE  
 

Nominal 5 at. wt % Fe doped SnO2 films were syn-

thesized by chemical solution deposition (CSD) on dou-

ble side polished SiO2 substrates. The details of film 

fabrication can be found in Ref. [22]. High purity 

( 99.9 %, Sigma Aldrich) hydrated [SnCl2 · 2H2O] and 

[Fe(NO3)3 9H2O] were used. The solution was spun 

coated on clean, sonicated SiO2 square substrates at 

4000 rpm for 30 sec followed by slow drying in air at 

400 C for 1 min. This process was repeated several 

times to obtain the film thickness of about 160 nm. The 

films were annealed under oxygen flow at 650 C for 

2 hrs. All the films were characterized by grazing inci-

dence X-ray diffraction (GIXRD), atomic force micros-

copy (AFM), cross section SEM and electrical proper-

ties. For electrical measurements, stripe shaped Ag 

electrodes of dimension 400  200 m2 and 100 nm 

thickness were deposited through metal shadow mask 

on the films by vacuum evaporation to form planner 

metal/SnO2:Fe/metal structures and copper probes 

were pressed directly on the films to use as electrodes. 

Typical four wire technique was employed to study the 

current voltage characteristics by using Keithley 4200 

PIV semiconductor parameter analyzer. 

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
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3. RESULTS AND DISCUSSION  
 

The AFM images show smooth surface morphology 

with RMS roughness comparable to that of the SnO2 

unit cell parameter. Average crystallite size estimated 

from the GIXRD and AFM are in the range of 15-

20 nm. Film thickness uniformity was confirmed by 

cross sectional SEM images of SnO2:Fe transparent 

film and is shown in Fig. 1(c). The film-substrate inter-

face can be clearly seen. The film thickness was esti-

mated to be ~ 230 nm. The atomic percentage of ele-

ments in the film was close to that of starting stoichio-

metric one, as revealed by the energy dispersive analy-

sis of X-rays (EDAX).  
 

 
 

Fig. 1 – (a) GIXRD pattern of SnO2:Fe film grown on SiO2 

substrate (b) Three dimensional AFM image (Scale 

1 m  1 m) and (c) Cross sectional SEM image of the film 
 

Fig. 1 shows (a) the grazing incidence X-ray diffrac-

tion (GIXRD) pattern, (b) three dimensional AFM im-

age and (c) cross sectional SEM image of Fe0.05Sn0.95O2 

film. All the peaks of GIXRD correspond to rutile-type 

phase SnO2 nanostructure (space group P42/mnm) and 

the unit cell parameters were found to be a  b  0.51 

nm and c  0.946 nm, slightly smaller than the report-

ed ones for pristine SnO2 films [23]. The GIXRD meas-

urements did not reveal the existence of Fe2O3 or Fe3O4 

phase, indicating that iron was incorporated into the 

tin oxide lattice at this doping level.  

Typical current voltage (logI vs. V) characteristics of 

Ag/SnO2:Fe/Ag is shown in Fig. 2. The inset shows a 

schematic of the planar device structure used for elec-

trical measurements. A continuous voltage sweep with 

a sequence – 2 V  0 V  + 2 V  0 V was applied 

thorough terminals A and D and current was measured 

at the points B and C, respectively. Current values for 

several voltage sweep cycles were recorded over a span 

of three to four hours to examine the reproducibility of 

the results and even by reversing the polarity. Nearly 

insulating behavior was observed in the I-V and only 

small leakage could flow through the cell up to the bias 

voltage of ~ ± 1.0 V. This state is defined as the high 

resistance state (HRS). At a forward bias voltage of 

1.6 V, the current was found to jump by nearly three 

orders of magnitude, and material offered a resistivity 

of about 50 kΩ. This is defined as low resistance state 

(LRS) in the Fig 4(a). On sweeping the voltage 

from + 2V  0, a linear I-V curve was traced and the 

cell remain in the LRS until the external bias was re-

moved.  

Further, similar trend of RS was observed while 

sweeping the voltage with negative polarity. These 

results clearly suggest that the RS is bipolar and sym-

metric in nature. It is interesting to note that a tre-

mendous current increase (decrease) was observed in 

HRS  LRS (LRS  HRS) transitions. Maximum RS 

ratio (Rhigh/Rlow) of the order of 3.4  103 is estimated 

from the hysteresis loops of the I-V curves. Application 

of the voltage sweeps for over four hours duration did 

not alter the switching ratio significantly, as labeled by 

“1st” and “2nd” sweeping cycles in Fig. 2, which were 

recorded after a span of four hours and the RS voltages 

were remained the same at ± 1.1 V suggesting an excel-

lent symmetry in resistance switching.  
 

 
 

Fig. 2 – Four terminal I–V characteristics of Ag/SnO2:Fe/Ag 

planar RRAM cell recorded just after forming the electrodes, 

labeled “1st sweep” and repeated after a time span of four 

hours, labeled as “2nd sweep”.  Inset shows typical measure-

ment geometry. A continuous voltage sweep with a sequence  

– 2 V  0 V  2 V  0 V  ─ 2 V, as indicated by arrows, 

was applied thorough terminals A and D and current was 

measured at the points B and C 
 

The observed symmetry is primarily attributed to 

the geometry of the structure. Electrical forming pro-

cess, reported in some cases of electrical-field- induced 

resistance switching phenomena [7-8], was not ob-

served in any of the I-V characteristics. Further, the 

hysteresis loops are observed in I-V characteristics 

even by applying either forward or reverse bias to Ag 

electrodes in four wire geometry. This indicates that 

the switching is independent of bias polarities. The 

resistance of Ag/SnO2:Fe/Ag planner device could be 

switched reversibly between HRS and LRS when pulse 

voltages were applied as shown in Fig. 3(a). Upon ap-

plication of voltage pulses either – 2.5 V or + 3.5 V for 

each of 5 ms duration, the resistance was found to 

switch from the HRS (LRS) to LRS (HRS), respectively. 

The bias voltage of 0.5 V and current compliance of 0.1 A 

was maintained throughout the voltage sweeping cycles. 

The resistance switching ratio [Rhigh – Rlow/Rlow] reached 

nearly 430 % upon application of positive and negative 

pulses and was independent of the duration of pulse 

width up to 100 ms. Further, the resistance states are 
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stable without detectable signs of degradation over 600 

cycles confirming the nonvolatile nature and the non-

destructive readout property of the devices.  

For further analysis, the retention characteristic of 

the device was examined to elucidate the activation of a 

non-volatile memory in the LRS and HRS. As can be 

seen from Fig. 3(b), no significant change in the re-

sistance values in the LRS and HRS were observed up 

to 104 s. 
 

 
 

Fig. 3 – (a) Electric pulse induced resistance switching char-

acteristics of Ag/SnO2:Fe/Ag planar geometry (b) Retention 

behaviour measured at room temperature 
 

The resistance states are stable without detectable 

signs of degradation over a period of 104 s, confirms the 

nonvolatile nature and the nondestructive readout 

property of the devices at room temperature. The ob-

served memory effects and non volatility in our 

Ag/SnO2:Fe/Ag planar structures are even better than 

the one recently reported by Nagashima et. al. [24] for 

Pt/SnO2/Ti/Pt, involving stack-capacitor like device 

structure. These results suggest a remarkable reliabil-

ity performance of Ag/SnO2:Fe/Ag planar device cell for 

nonvolatile memory applications.  

In order to understand the RS mechanism, we have 

fitted our electrical data in to well established conduc-

tion models. In the low voltage region, both the LRS 

and HRS curves present ohmic behaviors. Here, to 

clarify the mechanism governing the RS, we fitted the 

HRS data by using the trap-charge space charge lim-

ited current (TC-SCLC) and the Schottky conduction 

mechanism and the results are displayed in Fig. 4(a), 

where inset show the later fitting. The log I vs. logV 

plot of Fig. 4(a) can be fitted well with a line that has a 

slope of 2.2, which indicates that the conduction mech-

anism in the HRS is static induction current (SIC) or 

the space charge limited current (SCLC) type. In SCLC 

through insulating layers, a large current increase 

occurs when trapping sites in the insulating layers are 

fully occupied at a threshold voltage, VT. Typically, VT 

is around 1.0 V in the initial process of resistance 

switching. Above the threshold voltage, current abrupt-

ly increases at first as I  V2 and then reaching to V9 as 

can be seen in Fig. 4(a). This drastic increase in current 

may be induced by trap-charge space charge limiting 

current (TC-SCLC). Thus, when the density of thermal-

ly generated free carriers inside the SnO2:Fe film is 

greater than that of the injected charge carriers, ohmic 

(I  V) behavior is observed.  
 

 
 

Fig. 4 – (a) LogI-log V plot in the HRS with TC-SCLC fitting, 

inset show the Schottky fitting (b) log I-V1/2 plot fitted with 

Pool-Frankel equation in the LRS 
 

Once the injected excess carriers dominate the ther-

mally generated carriers, carrier conduction is controlled 

by the shallow traps (I  V2) represented by [9]: 
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where εr is the static dielectric constant, εo is the per-

mittivity of free space,  is the electron mobility, V is 

the applied voltage, d is the film thickness, Nc is the 

effective density of states in the valence band, Nt is the 

number of shallow traps, E is the effective trapping 

potential, and T is the temperature. Moreover, with 

further increase of external bias, the observed tremen-

dous current increase (LRS) leads to departure from 

the V2 dependence to V9 of device current, as shown in 

Fig. 4(a). Next, it is also suggested that the Ag/SnO2:Fe 

interface may have a Schottky nature because the 

Schottky equation is widely used in the leakage current 

analysis of the metal/semiconductor structures [25]. If 

the Schottky conduction is obeyed in the HRS, a linear 

relationship between logI vs V1/2 should be obtained 

and the slope should give the refractive index n 

(n  εi
1/2). Inset of Fig. 4(a) show the Schottky fitting of 

logI vs V1/2 curves in the HRS, where linear behaviors 



 

S.J. TRIVEDI, U.S. JOSHI J. NANO- ELECTRON. PHYS. 9, 01025 (2017) 
 

 

01025-2 

(slope of 2.14) are observed. The refractive index calcu-

lated from the slope is about 2.34 (with the tempera-

ture T of 300 K and thickness d of 230 nm), which is 

close to the value of 2.1 for SnO2 [26]. Hence, it appears 

that the I-V characteristics of the Fe doped SnO2 film 

are manifestations of a combined TC-SCLC and the 

Schottky conduction mechanism in the HRS. After 

switching, the I-V characteristic of the Ag/SnO2:Fe 

interface is well described by the Poole-Frenkel effect  

(I  exp(V1/2)) and thermionic emission across the 

Schottky-like barrier. Indeed, the log I-V1/2 plot in 

Fig. 4(b) for the LRS is a linear function above 1 V. 

These results suggest that both trap charged an insu-

lating interfacial layer and a Schottky-like barrier at 

the Ag/SnO2 interface are closely related to the switch-

ing phenomenon.  

According to the analysis results given above, the 

switching of the initial SnO2:Fe film to LRS is due to the 

formation of metallic filaments and/or the migration of 

oxygen ions close to the Ag/SnO2 interface that accom-

panied by a soft breakdown. For the reset process, the 

resistance increases suddenly which indicates that the 

filamentary conducting paths might be ruptured. The 

Joule heating effect by the external current is considered 

for the rupture of filaments. By increasing the voltage to 

a threshold value, the high current flow through many 

filaments heats up the film which induces a simultane-

ous rupture of the filaments and the HRS is achieved [7, 

13]. For the set process (LRS), it is possible to form con-

ducting filaments by excess Sn and/or Fe ions and oxy-

gen vacancies at the interface, because the sample stoi-

chiometry might be perturbed under the influence of 

electric field. Moreover, the pulse field of the order of 105 

V/cm is high enough to conceivably create dense crystal-

line defects through electromigration. It is well known 

that SnO2:Fe, like the SnO2:In is n-type semiconductor 

because of the existence of intrinsic defects (oxygen va-

cancies and/or metal interstitials) [19]. Recently, Ni et. 

al. [23] have reported p-type conductivity in SnO2:Sb 

films and shown that lower valance cation substitution 

for Sn4+ works as acceptor impurity. It is therefore ex-

pected that, Fe2+/3+ substitution for Sn4+ introduces holes 

in the system and annihilate part of the intrinsic n-type 

carriers and decreases the carrier density. In fact, the 

resistivity of the SnO2:Fe films were found to be nearly 

an order of magnitude higher than that of the pure SnO2 

films (not shown). Thus, it might be possible that, both 

acceptor-type level and donor-type levels due to oxygen 

vacancies co-exist in the system. In other words, both the 

trapping (detrapping) of SCLC and generation (rupture) 

of multifilaments contribute to the carrier transport in 

the Ag/SnO2:Fe/Ag device structure. Similar findings of 

suppression of conductivity in ZnO upon Cu doping, due 

to trapping of free carriers by the Cu, resulting in stable 

memory effect in Au/Cu-ZnO/Si stack structure has 

recently been reported in Ref [27]. Furthermore, Tang 

et.al. [28] have studied the effect of La doping on the 

unipolar RS behavior of ZnO, which exhibit excellent RS 

even in its intrinsic form [6]. Next, when the external 

current density is large enough in low resistance state, 

sufficient electrons are injected in the film and the Joule 

heating effect might cause a simultaneous rupture of the 

multifilaments. Therefore, it seems that the reset pro-

cesses are resulted from the Joule heating effect. 

Optical spectrograph of SnO2:Fe film is shown in 

Fig. 5. Excellent transmission of better than 87 % has 

been observed in the entire visible range. Inset of Fig. 5 

shows the absorption spectra, i.e. plot of 2 vs. hυ, where  

is absorption coefficient and hν is the photon energy. 
 

 
 

Fig. 5 – UV-visible transmission spectra of 140 nm thick 

SnO2:Fe film. Inset shows the absorption spectra (2 vs. hυ). 

The optical absorption edge was estimated to be 3.41 eV 
 

Optical band gap (Eg) of 3.41 eV was estimated 

from the absorption spectra by using the relation,  

( hν)1/2  constant (hν – Eg).This value is slightly 

higher than 3.2, reported for the SnO2 thin film [23]. 

This result also suggests that Fe substitutes for Sn in 

SnO2 matrix. By combining the results of resistance 

switching and optical properties, we have demonstrat-

ed that SnO2:Fe is a promising candidate for transpar-

ent non-volatile RRAM device. 

 

4. CONCLUSIONS 
 

In summary, the resistance switching behavior of 

Fe doped SnO2 transparent thin film fabricated by 

chemical solution deposition has been investigated for 

non volatile memory applications. A typical 

Ag/SnO2:Fe/Ag device cell showed stable and reproduc-

ible electric-field-induced resistance switching behav-

iors. Non volatile memory retention having resistance 

switching ratio of 4  103 has been demonstrated. The 

I-V characteristics of the SnO2:Fe film suggest that 

both SCLS and the Schottky conduction mechanism are 

important in the HRS, whereas Pool-Frankel type I-V 

fits well in the LRS. A possible mechanism of the for-

mation and rupture of conducting filament is proposed 

based on the Joule heating effect with external electron 

injection at the Ag/SnO2 interface. These results 

demonstrate that SnO2:Fe has a good potential for 

transparent RRAM device for the next generation non-

volatile memory. 
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