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In this paper, the magnetic dynamics and mechanical rotation about the center of mass of a uniaxial 
ferromagnetic fine particle in a viscous liquid are described using the classical approach. In particular, the 
synchronous rotation of the magnetization vector and unit vector, associated with the anisotropy axis, to-
gether with a circularly polarized external magnetic field is considered. The feature of this mode for the 
given system is that both the magnetization and anisotropy axis do not lie in the plane of the field polari-
zation. This fact is explained by the presence of effective permanent field, perpendicular to the polarization 
plane. Obtained results allow to perform more realistic evaluations of the power loss of an external field in-
teracting with a ferromagnetic fluid. 
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1. INTRODUCTION 
 
The problem of describing the trajectories of ferro-

magnetic nanoparticles suspended in a liquid is directly 
related to the problem of the microscopic description of 
the response of a ferromagnetic liquid [1] to an external 
field. First, the state of motion of each particle eventual-
ly determines a certain form of their collective behavior 
which in itself allows to claim analytical results. Second, 
attention to the microscopic behavior makes it possible to 
improve approaches to the numerical description of the 
behavior of ferrofluids and reduce computational costs to 
obtain the desired result. At the same time, the assigned 
problem is far from being trivial and has been studied in 
various approximations for a long time. 

The dynamic approximation, in which thermal fluctu-
ations are considered negligible, is important from both 
the methodological and practical points of view. Thus, we 
obtain not only the basic idea of the nanoparticle dyna-
mics, but under certain circumstances (the conditions will 
be discussed below) the results of this approximation are 
quite adequate to the real situation. The classical equa-
tions of motion are the basis for the dynamical descrip-
tion. For example, to describe the precession of the mag-
netic moment excited by a circularly polarized field in a 
fixed particle, the Landau-Lifshitz equation was success-
fully used [2]. For the case of precession in this field of 
a rigid spherical dipole, the basic equation of rotational 
motion with a torque of friction proportional to the an-
gular velocity was applied [3]. 

However, attempts to describe the coupled magnetic 
and mechanical dynamics of a nanoparticle in a liquid did 
not always lead to consistent results. Thus, the approxi-
mate expressions for the angular characteristics of pre-
cession in the case of small field amplitudes were obtai-
ned in [4] by linearizing the Lagrange equation. The ge-
neralization of the results for the case of arbitrary field 
frequencies and amplitudes can be performed through the 
analysis of direct equations of motion. The writing of the 
latter, as shown by a number of unsuccessful attempts 
[5, 6], turned out to be a distinctive challenge for theo-
rists. And only relatively recently has a consistent app-
roach been proposed based on the total angular momen-

tum conservation law [7]. Using the equations of motion 
obtained in the above-mentioned work, we describe the 
features of precession of the magnetic moment and the 
easy axis of a nanoparticle with finite anisotropy in a vis-
cous fluid under the action of a rotating field, as well as 
study the dependences of the characteristics of the stable 
solutions on the system parameters. 

 
2. THE MODEL AND ITS JUSTIFICATION 

 
We consider a spherical ferromagnetic nanoparticle of 

radius R, magnetization M and density . The uniaxial 
anisotropy is characterized by the anisotropy field Ha. We 
assume that the particle is single-domain and the change 
in magnetization occurs without changing its magnitude 
( M   M  const), since all the spin magnetic moments 
always remain parallel due to the strong exchange inter-
action. In addition to the motion of the magnetization 
with respect to the crystal lattice, we suggest that the 
particle itself can rotate around its center of mass being 
suspended in a liquid with viscosity . The translational 
motion of the particle is not taken into account. 

As noted earlier, to describe the coupled magnetic and 
mechanical rotational dynamics of the nanoparticle, it is 
not sufficient to simultaneously use the equations des-
cribing the magnetic dynamics of a fixed particle and the 
motion of a particle, whose magnetic moment is rigidly 
fixed to the crystal lattice. A consistent approach to sol-
ving this problem was proposed in [7], where the follo-
wing system of equations was written based on the total 
angular momentum conservation law: 

 
 n n , (1) 
 1 6J V V VM M H , (2) 
 1

eff MM M H M M M , (3) 
 

where n is the unit vector indicating the direction of the 
anisotropy axis,  is the angular velocity of the particle, 
J (  8 R5/15) is the moment of inertia,  is  the  gyro-
magnetic ratio, H is the external uniform field, V is the 
particle volume,  is the damping parameter, Heff is the 
effective magnetic field which takes into account the 
internal anisotropy field as 
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 1
eff aH MH H Mn n , (4) 

 
and, finally, the dot above denotes the time derivative. 
In fact, equation (1) is the condition of spherical motion 
of a rigid body. Equation (2) is the basic equation of ro-
tational motion, in the right side of which, in addition 
to the moment of the friction force and the moment des-
cribing the action of the external field, there is a term 
proportional to the derivative of magnetization arising 
from the total angular momentum conservation law. It is 
precisely this that makes up the difference between equ-
ation (2) and its analogue, which is often used to describe 
the rigid dipole rotation. Equation (3) coincides with the 
Landau-Lifshitz-Gilbert equation up to a term proportio-
nal to M    M, which excludes the component M ro-
tating along with the crystal lattice. Further we assume 
that the particle is affected by an external circularly po-
larized homogeneous field in the form 

 

 cos sin ,x yH t H tH e e  (5) 
 

where ex, ey are the unit vectors of the Cartesian coordi-
nate system, H and  are the field amplitude and fre-
quency, respectively, t is the time, and  (   1)  is  the  
factor determining the field polarization direction. 

Equations (1)-(3) are written in the so-called dynamic 
approximation, when thermal fluctuations are not taken 
into account. This assumption is true if a number of con-
ditions are fulfilled. First, the magnetic energy should be 
much greater than the thermal one:   1,   MHV/kBT, 
where kB (  1.38 10 – 16 erg/K) is the Boltzmann constant, 
T is the thermodynamic temperature. Thus, for example, 
the condition of such a ratio between the magnetic and 
thermal energies   12 is fulfilled for maghemite partic-
les [8] with an average radius R  20 nm, magnetization 
M  338 emu, anisotropy field Ha  910 Oe, at a tempe-
rature of T  311 K and field amplitude H  0.05 Ha. 

Making demands on the field amplitude or particle 
size, it is important to synchronize them with the frequ-
ency requirements. Even if the condition   1 is met, 
there are both random deviations of the magnetic moment 
with respect to the crystal lattice and random changes 
in the angular coordinates of the entire particle. And if 
a sufficiently substantial thermal fluctuation is highly 
probable over the field period, then the dynamic approxi-
mation becomes invalid. The relaxation time is the cha-
racteristic time, during which the significant thermally 
induced changes can occur. And, as a consequence, for 
the mechanical rotation, the minimum field frequency 
should be determined by the Brownian relaxation time 

B  1/ B  kBT/(3 V),  for  switching  processes  –  by  the  
Neel relaxation time N  1/ N  ( / )1/2(2 Ha)exp(–  ) 
[9]. Then, the resulting requirement for the external field 
frequency is written as   max[ B, N]. For the above 
maghemite nanoparticles, taking   0.02 and blood as 
a viscous carrier with viscosity   0.05 at a tempera-
ture of T  311 K, we obtain that B  8.54 103 Hz and 

N  7.61 103 Hz. Thus, the frequency should be in the 
range of not less than hundreds of kilohertz   104 Hz 
that is quite acceptable for most ferrofluid applications 
including magnetic hyperthermia [10]. 

 

3. RESULTS AND DISCUSSION 
 
If the precession mode is implemented, the nanopar-

ticle rotates synchronously with the field (5) (see Fig. 1). 
The stationary solutions of equations (1)-(3) in this case 
should be sought in the form 

 

 1 1, ,t  (6) 
 1 1, ,t  (7) 
 

where ,  are the spherical coordinates of the magnetic 
moment M;  are the spherical coordinates of the easy 
axis n; 1 1 are the precession angles of the vectors M 
and n, respectively; 1 1 are the lag angles of the vec-
tors M and n, respectively. The absence of motion of m 
with respect to the crystal lattice will be a feature of the 
precession mode, and, therefore, the following condition 
will be true: 

 

 0.M M  (8) 
 
Substituting expressions (8), (3) into (2) and taking 

into account (4), we obtain 
 

 1 ( )( ) 6 .aJ H M V VM n M n  (9) 
 
To simplify the subsequent calculations, we introduce 

the coordinate system x y z , which rotates along with 
the easy axis, and n   ez. According to the application 
in [2], the condition   sin 1ey  is satisfied in this 
coordinate system. Let us find the angular velocity  
in the double-primed coordinate system by substituting 
the last expression into equation (1) 

 

 1siny x y y xe e e   
 1sin , 0, 0 . (10) 
 

Unfortunately, equation (3) cannot be written in the ro-
tating system; therefore, it is possible to use the result 
of (10) only by transferring it to a laboratory coordinate 
system. To this end, we introduce the rotation matrices, 
the origin of which is clear from Fig. 2, as 

 

 
 

Fig. 1 – Schematic representation of the synchronous rotation 
of the external field, the nanoparticle and its magnetic moment 
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Fig. 2 – The rotating coordinate system: rotation around the 
oz axis (a), followed by rotation around oy  (b) 

 

 
1 1
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1 1

cos( ) sin( ) 0
sin( ) cos( ) 0

0 0 1

t t
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1 1

1

1 1
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0 1 0

sin 0 cos
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Then the rotation matrices, according to which the tran-
sitions from the rotating system x y z  to the laboratory 
one xyz are performed, are determined as 

 
1 1 1

1 1 1 1 1

1 1 1 1 1

1 1

cos( )cos sin( ) cos( )sin
sin( )cos cos( ) sin( )sin .

sin 0 cos

C A B
t t t
t t t

 
Consequently, vector  and its derivative in the labora-
tory coordinate system will be written as 

 

 
1 1 1

1
1 1 1

2
1

sin cos cos( )
sin cos sin( )

sin

t
C t , (11) 

 

 
2

1 1 1
2

1 1 1

sin cos sin( )
sin cos cos( )

0

t
t . (12) 

 
Finally, we represent the vectors M and n, as well as 
their derivatives, in the system xyz taking into account 
expressions (6) and (7) 

 

 
1 1

1 1

1

sin cos( )
sin sin( )

cos

M t
M t

M
M , (13) 

 

 
1 1

1 1

sin sin( )
sin cos( )

0

M t
tM , (14) 

 

 
1 1

1 1

1

sin cos( )
sin sin( )

cos

t
tn , (15) 

 

 
1 1

1 1

sin sin( )
sin cos( )

0

t
tn , (16) 

and introduce the notation 
 

 1 1 1 1 1 1sin sin cos( ) cos cosF M n . (17) 
 

We substitute formulas (5), (11)-(17) into (2), equate 
the expressions in the right and left parts with the same 
unit vectors. Then, the result obtained for ex is multi-
plied by cos t, and the result for ey is multiplied by 
sin t. By summing the found equalities and simplify-
ing the result, we get 

 

 1 1 0sin sin zMV H   
 1 1 1 1sin cos sin 6 cosJ V . (18) 
 

Here H0z is the constant field directed along the oz axis. 
Equating terms at ez, we directly obtain 

 

 2 2
1 1 1sin sin 6 sinMH . (19) 

 
Similar operations with equation (9) allow to derive 

 

 1 1 1sin( )sinaMVH F   
 1 1 1 1sin cos sin 6 cosJ V , (20) 
 2

1 1 1 1sin sin( ) 6 sinaMH F . (21) 
 

In fact, we obtained a system of four equations with res-
pect to unknowns – the angular parameters 1, 1, 1, 1. 
Let us simplify the derived system by substituting the 
relation (18) into (20) and the relation (19) into (21). As 
a result, we write 

 

 1 1 1 1 0sin( )sin sina zH F H , (22) 
 1 1 1 1sin sin( ) sinaH F H . (23) 
 

Thus, equations (18), (19), (22), (23) will be considered as 
the components of the resulting system. 

Exact solutions of such a system can be obtained only 
numerically; however, certain properties of the solutions 
proceed from the system itself. Thus, it follows from (22) 
that 1 > 1 and from (23) – that 1 < 1 for a counter-
clockwise polarized field (   –1) and no field along the 
oz axis. Then, it follows from (18) that 1 > /2 at   –1 
and H0z  0. First, this concludes the discussion on the 
fact that in the precession mode, the angle between the 
vectors M and H will always be smaller than the angle 
between n and H.  This  means  that  the  resulting  loss  
power, which increases with increasing angle between 
M and H, will be the smaller, the smaller the anisotropy 
field is. Due to the absence of the magnetic moment mo-
tion relative to the crystal lattice, additional losses on 
account of the magnetic dynamics will be absent; there-
fore, such a reduction cannot be compensated even theo-
retically. Second, in the case of finite anisotropy, one can 
talk about the presence of some (induced by the field of 
type (5)) effective field along the oz axis, equal to / , 
whose direction depends on the polarization of H. When 
the frequency approaches the ferromagnetic resonance 
frequency, such an effective field will be comparable to 
the anisotropy field. This induced field can significantly 
influence the collective dynamics of an ensemble of ferro-
magnetic nanoparticles in a rotating field, since it will 
be a peculiar magnetizing factor, which finally will de-

a b 
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termine the direction of the resulting dipole field. There-
fore, the application of the frozen magnetic moment mo-
del can qualitatively distort the hysteresis properties of 
the nanoparticle ensembles. 

At the same time, the questions about the stability of 
the precessional motion (as in the case of the magnetic 
moment dynamics in a fixed particle [2]), other possible 
classes of solutions of equations (1)-(3) and the transitions 
between them [11] remain open. These questions require 
a thorough further numerical analysis of the system be-
havior. Currently, we can say that the preliminary nu-
merical simulation confirms the presence of a stable pre-
cession mode, as well as its qualitative characteristics. 

 
4. CONCLUSIONS 

 
Using the equations of motion derived from the total 

angular momentum conservation law and taking into ac-
count the relativity of the magnetic moment motion in 
the relaxation term [7] to govern the coupled magnetic 
and mechanical rotational dynamics of a ferromagnetic 
nanoparticle, we described the precessional motion in-
duced by a circularly polarized external magnetic field 
of the form (5). The basic procedure of our approach was 
to find the angular velocity vector in the coordinate sys-
tem rotating together with the particle, where the given 
vector has the simplest form, with subsequent transfer 
to the laboratory coordinate system. 

As a result, we obtained the algebraic system of equ-
ations for the precession and lag angles of the magnetic 
moment and the easy axis, which corresponds to the ini-
tial equations of motion. The fundamental properties of 

the solution are the following. 1. The magnetic moment 
always makes a smaller angle with a rotating field than 
the anisotropy axis. As a result, there is a decrease in 
energy losses with decreasing effective anisotropy field.  
2. The presence of an effective constant field, equal to 

/  (  is the factor determining the polarization direc-
tion,  is the field frequency,  is the gyromagnetic ra-
tio), perpendicular to the polarization plane, the direc-
tion of which is associated with the field rotation direc-
tion by the right screw rule. This field in absolute value 
will tend to the anisotropy field when the frequency ap-
proaches the ferromagnetic resonance frequency and can 
have a significant impact on the collective dynamics of 
ferromagnetic nanoparticles in a liquid. 

The results obtained in the work have theoretical and 
methodological significance as an important step in the 
microscopic description of the properties of a ferrofluid. 
The precession mode can be an initial test example for 
the subsequent numerical stochastic description of both 
the single particle dynamics and the collective dynamics 
of an ensemble of particles. An important applied aspect 
of the presented results consists in the availability of a 
more accurate analytical tool for estimating the heating 
rate of a ferrofluid using an external alternating field in 
magnetic hyperthermia [10], which is a promising meth-
od for treating cancer tumors. 
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