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Based on the proposed mathematical model the mechano-electric characteristics of the near-surface
layer of solids included in the linear equation of state and connecting the parameters of states were
calculated. Quasiequilibrium condition model of conduction electrons (related charges) on electric double
layer on the surface of solid were presented. For the first time, the most important physical quantities to
the surface —surface and interfacial charge Q, the electrical component of the surface energy 7, the
thickness of the surface layer h, electric double layer capacitance C and Galvani potential AY for a number
of materials: Cr, W, Gd, Hf, Pd, Mg, Ta, Sm, Si, Cu were calculated. These parameters for the diagnosis of
structural elements in aggressive environments can be used and energy characteristics of surface and

interfacial layers can be determinated.
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1. INTRODUCTION

As you know, on the border of metal with inert
environment the electric double layers (it’s correspond
to the gradient of the electron density (20 nm)) exists
[1]. It’s play a decisive role for formation of chemical-
reactive properties of solids and interface interaction
with other boundary phases. The information about
physical properties of electric double layers are
essential for creation of multiphase materials with
predictable properties. The most important among
them i1s the parameters which were describe the
distribution of spatial charges, mechanical stress
within the bilayer, surface or interfacial charge etc. and
which binds together the relevant parameters of the
state equations.

The aim of this work,based on the principles of
surface physics and thermodynamics of nonequilibrium
processes,the mathematical model of the surface layer
taking into account the internal mechanical stress,
development of methods for determining its physical
constant, included in the equation of state and
calculations of the physical characteristics of some
typical near-surface layers of materials with different
physical and chemical properties: Cr, W, Gd, Hf, Pd,
Mg, Ta, Sm, Si,Cu is develop.

2. THEORETICAL PRECONDITIONS FOR
MATHEMATICAL MODELING OF CHARGES
DISTRIBUTION AND MECHANICAL STRESS

2.1 Research Object

We formulate one-dimensional correlations for
modeling mechanical stress and redistribution of
electric charges (free for metals and related to
semiconductor or insulator) with r coordinate, where r
— radius vector of a point in a spherical coordinate
system.The sphere (Vi area, r< R) is placed in a
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uniform inert gas environment (V. area, r > R), which
pressure 1s equal p = 100 kPa. The electric double layer
generated conduction electrons and metal ions and
located on the sphere surface on the spherical ring,
which thickness A (R>r> R —h) [1].

We simulate the metal sphere using two-component
homogeneous solid environment consisting of two
continuous continuums: the conduction electrons and
lattice ions, for which carried out the hypothesis of
continuity and local thermodynamic equilibrium [2, 3].

The electric double layer is formed on the border of
metal (the sphere) and external inert environment.
This layer corresponds to the gradient of the electron
density in the small border layer (thickness is less than
20 nm) [1]. During this process the electric shells of the
thin border atoms are deformed. These deformations
are manifested in the change of lattice parameters.
Based general ideas surface physics and continuum
mechanics we put the deformations of atoms in
correspondence to the mechanical stresses. Also we
consider the distribution of electrical charges and
mechanical stress are interrelated. To find the
distribution of electrical charges and mechanical stress
in a thin surface layer of metal we use Poisson's
equation (for electrical charges) of the balance of items
of solids and determination of surface tension and
energy.

2.2 Selecting State Parameters

To describe mechanoelectric distributions in the
sphere we consider two pairs of parameters of the
thermodynamic state : a) for redistribution of electrical
charges - concentration of electrons Ce, ions Cion and the
chemical potentials M., Min corresponding them
(concentrations are dimensionless, dimension of chemical
potentials — J/kg); b) for the stressed state — tensors of
deformation ¢ and mechanical stresses & [2-5].
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These settings we substitute in the extended Gibbs
equation for state function U - is internal energy
([U] = J/kg) [2-4]:

3
aU = TdS +l Z O-ij : deij + MedCe + MiondCion (1)
Pij=1

where S, T — entropy and temperature of the local
element respectively ([S]=dJ:-(kgK)-1, [T]=K); p —
specific density of material ([g] =kgm=-3); ej, pj —
components tensors of stresses & and deformations é
I, j=1,2,3; [oyj] =Pa). Given that the mass of the
electron by three orders less than the mass of the ion,
we can take dCion = 0.

Then we multiply and divide expression M.dC. by a
constant z., where 2. — electric charge of unit mass of
conduction  electrons  ([ze] = Clkg-1). Result of
multiplication is Ceze = @ = wy/p; where @, wy — specific
electric charges of local element calculated per unit
mass and unit volume respectively: ([@]=Clkg-1,
[wy] = Cl'm~3). The relation Meze=®=®o+ ¢ is called
modified chemical potential of the conduction electrons
(MCPCE) ([@] =[¢] =B).

In this case, the Gibbs equation (1) can be written
(including replacement of multiplication result
M.dC.=®dw) for the free energy F=U-TS— &D) in
the form of [2-4]:

3
dF =-SdT+X 3 o, -de, +odd, @)
pij=1

From (2) follow the state equation in general form:

s () |
dT e..,CD=const,

ij

OF

O-ij =p de.. ; (3

YT d=const
e p(@]

d®Jle.. T=const
)

In the next we confine the isothermal case and we
aren't considering the state equation for the entropy.
Methods for formulating state equations based on
relations (2), (3) are shown, for example, in [2-4]. With
this purpose usually functional for free energy F 1is
decomposed in the Taylor series on the state
parameters in the neighbourhood of the specified
equilibrium state. After that decomposition of the
functional limited of second component of
decomposition is substituted in (3). Then we are get the
linear state equations.

Using the principles of the explained technique,
according to (2) and (3), we are obtain linear state
equations for tensor components of mechanical stress
ojand density of electric charge @ [3-5]:

2
o, = [(K - 3GJe -, K-AT - Kbqﬁ} 0;+2Ge;, (4)
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ay = po=pCyp—y,-AT)+bKe, )

where & — Kronecker symbols; e=ei/3 — the first
invariant of deformations tensor; ¢= ® — ®o — rejections of
the modified chemical potential @ of conduction electrons
from its equilibrium value ®o in the volume of the body
away from the surface; AT'= T— To — temperature changes
(To — temperature values in the initial equilibrium state);
K, G — factors of the comprehensive compression and
shear; C, — specific capacitance; b — electrostrictive
coefficient of volume expansion; o: — temperature
coefficient of volume expansion; y — temperature
coefficient of changes MCPCE.

2.3 Galvani Potential

To analyze the redistribution of the conduction
electrons of the neighbourhood of the metal surface we
are considering Galvani potential (difference of internal
electrical potentials — Aw). This potential defines
difference of the electrical potentials between two
points in different phases [6]. These phases can be two
different solids (eg, two mechanically connected metals,
metal and semiconductor, etc.).

Electrochemical

potential 1z, for conduction

electrons in the metal including definition of ® can be
represented as [6, 7]:

H, =2z, (P+Y¥), (6)

where W — the potential of the electric-field intensity
(scalar electric potential). y=¥—Wo — deviations of
potential ¥ from its original equilibrium value Yo
(potential W is defined up to a constant [6]).

If two phases «and S have the one common charged
particle  (for example, electron), then their
electrochemical potentials #,, and #,,are aligned [6]

and as the result we get the ratio:

Moy =2 (P +P,), Hyy=2,(®y+¥,),
ﬁm:ﬁeﬁ, (Da+‘Pu:(Dﬂ+‘Pﬂ,
Ay =¥,-¥,=0,-0,=-Af, Ay+Ap=0, (7)

Ay +¢)=0,
Ay +9+D,)=0, y+¢+d,=const

As in this case, the Galvani potential is determined
using difference of chemical potentials
Ay =AY =@, -®, (6). This similar to definition of

potential difference of MCPCE. Therefore in the further
transformations we use Ay =-Ag (symbol A means the
deviation of potential).

Using last relations (6. 7) w+ ¢+ ®o=A =const we
provide analysis of particular case, when phase « is
metal and phase £ is not electroconductive inert gas

environment, which we take A=0 (because the
electrochemical potential is determined up to a
constant).

In the external inert environment (outside sphere in
volume V) for electric potential [2, 3] is:
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AY =0, ®)

from which follows that Y.=A. where A. is constant.
Taking the electric potential at infinity equal to zero,
we obtain Ye=A:= 0 in the volume V..

Since the electric potential Won the border of
arbitrary medium is continuous, then for the
boundaries of the phase « (on the surface I') from (7)
follows the limit relation:

Pp+D, =0, ¢=—-D,, 9)
3. DETERMINING DISTRIBUTIONS OF
ELECTRICAL CHARGES AND MECHANICAL
STRESS

3.1 Basic Equations of Mechanoelectrics for
Metal

In accordance with the fundamentals of electrostat-
ics and nonequilibrium thermodynamics [4, 5, 7, 8] we
can show the electric potential Y using Poisson's equa-
tion (10) and the stress tensor we can show as part of
the equilibrium equation (11):

e, AY = gg)Ap =—pw = -y, , (10)
Divé +p-w-E =0, 11)
é = Defi, (12)

where # — is the movement vector in spherical

coordinates i =(u, ,0,0)), which is associated with the

tensor of deformations é by the geometric equation
(12) [9].

Boundary conditions on the surface G of the
distribution of the electroconductive body and inert gas
environment, taking into account (8) [2. 3, 8] can be
represented as:

G, =pc+%Q(E+EC); Q=2zz(IE, I-1E, );

Y=, ¢=-0,

c

(13)

where p, — the environment pressure to the normal 7
to the surface I'; Q — surface charge; ¢ — permittivity
E — components of the electric-field

cn’ n
intensity of environment and metal to the normal to
the surface I'.

The problem of the distribution of electrical charges
and the mechanical stresses corresponding them in
double electrical layer (4), (5) (10)-(13) we can
formulate in a spherical coordinate system (r, a, 6). For
this we move the origin of coordinates in the geometric
center of the sphere. Then we obtain:

dl1 d 3 d¢ :
G e (L S T

2 -C
49, 2d0 4oy OK, |po 2% ], 5
dr? r dr & €o

material; E
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oy = po = 80k2¢+bKe ; (16)
o, = (K—;GJe—bK¢+2Geii (i=ra0); (17

du

e:err+2600; err: r; eaazeOOZﬁ; ¢+1//+(I)0:const;
dr r
Er:_dl:@; Q:_goEr:godl:—gO% ;(18)
dr dr dr d
2 2
& (Ow & (0@
-—®,; =027 =200 27 19
P==Poi on="5 [arj 2 (arj (19)

atr=R.

3.2 Method of Determining Distributions @, ox,
oy

Since the expression (14) is nonlinear (expression
oy-Er 1s the ponderomotive component), then we are
solving the system of equations (14), (15) taking into
account (16)-(19) for finding the distributions of
potential ¢ and mechanical stresses or, oy analytically
using the method of small parameter b,.=b®o, limiting
of the four approximations of the decomposition.
Methodics of using the small parameter method for
solving problems of mathematical physics is described
in [10].

We represent the components - of movements and
¢ (deviation of MCPCE) as series of the small
parameter:

ur:uoz(b-d)o)-ul+£b~d>0)2-u2+’ ©0)
+(b- @) uy+(b-Dy) -y

¢:¢o+(b'®0)'¢1+(b'®0)2'¢2+

N . (21)
+H(b- D)y +(b-Dy) -4y
Relation for the potential ¢ and mechanical stress
o, opwe get from (14)-(19) for the area "Vy," taking into
account the shift Z of double electric layer relatively
border of the body [11]. The results of the solution (14)-
(19) we write in the abbreviated form:

o, =f(rb,k,R,®y); o, = fy(r,b,k,R,®); , (22)

R sh (kr)
= ak’qu) =-0,— 5
=1l 0)=~Po sh(kR)
W (23)
qO e
O, ="2=-.(2-exp(-kZ,));
0 2€0k2 ( p( b))
Z, =3(”+(5EV —1]arcsin\j3E7F —\/5EV J , (24)
k| 2\ 3E, 3E, +5E, \3E,
where f, f, — are symbolizing complex relations

which considered four approximations of the small
parameter b®o; Er— Fermi energy; Ev— electronic
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work from metal; kr— Fermi wave vector; W.—the
volume density of the conduction electrons of the metal
far from the surface (at a distance of more than 30 nm)
([We] = m-3); go— electron charge.

Shifting Z» of the double electric layer (24)
corresponds to the relationship equations (14) and (15).
Note that represented above expression (23) for ®o is
similar to the expression from work [11] derived using
the methods of statistical physics. The formula for ¢
(23) obtained from the solution of (14)-(21) (including
four approximations (21)), and similar to the first
relation (23) for ¢ including Z» (24) (for sphere with a
large radius R), given in work [11] virtually identical to
within corrections, the magnitude of which less than
4 %. This indicates that the result of four
approximations (41, ¢, ¢, ¢) for ¢ manifested in shifting
Zp. Therefore we can replace the complex expression
like (21) using compact relation for ¢(23).

3.3 Limiting Transition to the Flat Border

In relations (22), (23) make sense move to the flat
distribution border of environments, because effective
thicknesses of the double electric layer (surface area)
not more than 18 nm [1.11].

In expressions (22, 23) we carry the limiting transi-
tion R= o, where o= o, o= oy, and coordinate r
corresponds to x. Then the resulting relations in abbre-
viated form become:

¢ = fy(x, R, @y) = -D, ~exp(—kx);
o, ~ f.(x,b.k, D) :—%go-kz @? e

3K2e72kx
——|1
2(3K + 40)(

9K3e—3kx 1 (D* b
—— x| ot e -
2(3K +4G)” 3 20

4
9K et [l 4 L@*e*ﬂ“] o
8(3K +4G) 10

o, ~ f,(x,b,k,Dy);

7%b-®o-K~<D*-e’3k"7(b~<1)0)2- +q1* e*”“jf
(25)

_(b.q>0)3 .
(b-,)"-

where f, — is the complex relations;

B £0~k2 ~<I)3
*7 8K +4G

4. THE METHOD OF DETERMINING THE
PHYSICAL CHARACTERISTICS OF THE
MATERIAL

4.1 Representing Nonlinear

Equations

Systems of

Traditional approaches to assess of the physical %, b
characteristics of the surface layer of metal in the state
equations (16), (17) are providing usage approaches of
statistical physics or quantum mechanics, which often
lead to ambiguous results. The proposed approach uses
a method of the decomposition of displacement
variables and potential ¢ to the small parameter. Also
this approach isn't expect explicit usage of theories of
statistical physics or quantum mechanics.

Formal expressions for solution of previous problem
(25) we are substitute in the system of the four
equations [1, 4, 5], in which the surface tension or and
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energy y are defined as:

h

faydx =0y, 0,=0, (26)
0

VetV =7 27

C
%26(734_571%):0’ k= u (28)

Ok ok &
oy+p=0 (for x=nh) (29)

(p = 100 kPa — atmospheric pressure),

h
where y, = [w,dx — the electrical component of the
0

h
surface energy (SE); », =[w,dx —mechanical
0

2
component of SE; w, = @(67‘{’) and
2\ ox

o.(o,—4vo,) (1- v)o-§
w, = +
" 2F E
mechanical components SE; i — effective thickness of
the surface layer; E, v — Young's modulus and Poisson's
ratio, respectively.

Expressions (26), (27) describing the determination
of energy characteristics of surface layers. Relation (28)
is a condition of dynamic quasiequilibrium of particles
(electrons and ions) that form the double electric layer
on the surface of the body. Expression (29) is the
condition of the effective thickness of the surface layer.
The stresses oy are stretch (positive) in the boundaries
of the surface layer, and p=100 kPa (atmospheric
pressure) corresponds to compressive (negative)
stresses. Expression |oy| = |p| gives an opportunity to
calculate some distance from the surface h, therefore
the resulting stress will be zero (|oy|—|p| =0).

The system of equations (26)-(29) is applied to the
physical characteristics of the materia &, &, b, h for the
first time. In other works [4, 5] relations (26)-(29) were,
but in there them are used for determine the change of
surface tension and energy, and &, k, b, h are considered
constants (defined using methods of statistical physics
or quantum mechanics [1, 11, 12]).

— densities electrical and

4.2 Features of the Method of Calculation of
Physical Quantities &, k, b, h

Relations (26)-(29) are a system of equations to
determine the physical & £k, b, ® and geometric h
characteristics of the surface layer. The corresponding
algorithm for determining &, %, b, ®o, h we present in
three stages. First step, using the equation of
equilibrium of 6 (14) and (15) for j, which follows from
the Poisson equations, state equation (16), (17) and also
boundary conditions (19), we find five approximations
of distributions normal mechanical stresses o, op from
coordinate r (in particular, (22)-(24)) using the
technique of [4, 10] and using method of decomposition
¢ and displacements u, in the ranks by the small
parameter b,=bdo (20), (21) . At the second step, we
direct radius R to infinity and obtain analytical
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expressions for ¢, ox, oy (25) depending on the x and the
parameter k, not specifying numeric constants for the
material. At the third step, we substitute expressions
for ¢, ox, oy in the equation (26)-(29). For the system
(26)-(29) we must set only numeric values on, 3 E, v, p,
Ey, which are known from experiment [13-19] and EF,
We, are obtained from reliable results modeling
methods of solid state physics [20] (oris determined on
the basis of the experiment, and for yis known partial
results of experimental studies and theoretical models
[19, 20)).

Thus, at the third stage as a result of calculations
(simulation modeling), we get four important physical
properties of metal — & k, b, h. On these basis we can
determine the size and ®o (23), through which we are
formulating the boundary condition (19) for the
modified chemical potential ¢of conduction electrons.

Electric component of surface energy » we are
submit through capacitance of the surface electrical
capacitor C and potential (Galvani potential) AY using
relations of electrostatics [8]:

7, =01 (2-C)=C-A¥*/2, C=¢,-k/2, d=2/Fk,(30)
where d —the effective distance between the plates of
the capacitor surface (within the double electric layer).

4.3 The Results of Calculation of Physical
Quantities. Checking of Convergence

The  presented  algorithm  for  estimation
characteristics of the material & &, b, h tested for Mg,
Si, Cr, Fe, Co, Cu, Pd, Ag, Sm, Gd, Hf, Ta, W, Pt, Au.
Values of on, 3 E, v, p, Ev were determined by the
results of theoretical and experimental studies (mostly
known tabular data) [5, 13-20].

It should be noted that the proposed approach for
finding & k%, b, h can also be applied to semiconductors
and dielectrics, but instead the potential ® (MCPCE)
should be considered potential chemical Z., which
correspond to the particles that form the bound electric
charge (in this paper for silicon atoms) [8, 21]. In
addition, a shift of the double electric layer on the
surface is not taken into account for these materials.
The resulting physical quantities received during
calculations using (31) are given in Table 2.

It should be noted that for materials in Tab. 2 the
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clear laws of changes in the studied parameters for
element of N atomic number in the periodic law or X
electronegativity as 1is the case for interfacial
interaction was missed [4 ]. However, it is typical:
1) the thickness of the surface layer A in all the
analyzed material varies slightly and is ~ 1 nm (0,737-
1,117 nm); 2) the significant changes in the number of
investigated elements the surface energy j was
happened, it’s due to various input of the electric
component under the transition from purely covalent
bond (Si-related charges of dipole nature) to pure
metallic bond (for example Cu, Au, Cr, Ta); 3) the
change from element to Galvani potential element was
found, it’s due to their different valence because of
different contribution of conduction electrons in
interphase capacitor; 4) the surface charge Q decreases
naturally is because of the increase of covalent
component of the chemical bond and it’s reaches
minimum in Si.

CONCLUSIONS

1. Using basic equations of surface physics and
thermodynamics of nonequilibrium processes we
developed a mathematical model to determine the
physical quantities characterizing the redistribution of
conduction electrons (related charges) and mechanical
stress in the surface layer of metal (semiconductor)
which correspond them. The presented model takes
into account the condition of the dynamic
quasiequilibrium of conduction electrons (related
charges) in the double electric layer on the metal
surface (semiconductor).

2. On the basis of the proposed model we developed
the method of determining the physical characteristics
of the material which including in the linear state
equation (physical equation), the boundary conditions
for the chemical potential ®o (metal) (Z: (for semicon-
ductor)) and mechanical stress ox.

3. Also we determined the most important physical
quantities for metal surface — capacitance of the double
layer C and the Galvani potential A¥Y, which can be
used to diagnose structural elements in aggressive
environments, as well as to determine the energy

characteristics of the surface and interphase layers.

04005-5



V.M. YuzevicH, B.P. KoMAN, R. DZHALA

MexaHO-l)JIeKTpI/I‘IeCKI/IexapaKTepI/ICTI/IKI/I IIPUIIOBEPXHOCHBIX CJIOEB HEKOTOPBIX MAaTEpPHAJLJIOB

2 Jlveosckuii HayuoranvHolil yHusepcumem umenu Heana @panko, yn. Ipacomanosa, 50, 79005 Jlveos, Ykpaura

10.

MexaHo-e1eKTpUYHI XapaKTePUCTUKY IPUMOBEPXHEBUX MAPIB JeAKUX MaTepiaiB

B.M. I0zesuul, B.I1. Koman?, P. Jlxanal

1 Qizuxo-mexarnivnuil incmumym HAH Ykpainu imeni I pueopis Kapnenka,
eys. Hayrosa, 5, 79601 Jlvsis, Yrpaina

2 Jlvsiscokuli Hayionanvruil yHisepcumem imeni leana Opanka, 8yn. Ipacomanosa, 50, 79005 Jlveis, Yrpaina

Ha ocmoBi1 3ampomoHoBaHOI MaTeMaTHYHOI MOJEJI PO3PaxOBaHI MEXAHOEJIEKTPUYHI XapaKTEePUCTUKH
IPUIIOBEPXHEBOTO IIapy TBEPIOrO Tija, M0 BXOJAATH y JIHINHI PIBHAHHSA CTAHY Ta 3B’A3YIOTh ITapaMeTph
crany. [Ipencrasiena Mojesib BpaxoBye YMOBY KBa3ipiBHOBATH €JIEKTPOHIB IIPOBIIHOCTI (3B’sI3aHUX 3apsIiB)
y TOABIMHOMY €JIEKTPHUYHOMY ITapl Ha IOBEPXHI TBepAoro Tisa. Ymepire mys Huskw marepiams: Cr, W, Gd,
Hf, Pd, Mg, Ta, Sm, Si, Cu BusHaYeHO HANOLIBII BAMKJIVBI (DISWYHI BEJIMUMHY JIJIS [IOBEPXHI — IIOBEPXHEBUH Ta
Misk(a30BuUi 3apsas €, eJIEKTPOCTATUYHY CKJIAJI0BY ITOBEPXHEBOI €HEPTIl J, TOBIIUHY IIOBEPXHEBOrO Inapy A,
€MHICTD TO/IBIMHOTO estekrpuunoro mapy C i norenrian [aneBani A Y. 111 BeMauHM MOMKHA BUKOPUCTATH JIJIS JTi-
ArHOCTHKH €JIEMEHTIB KOHCTPYKIY B ArPeCUBHUX CEPEIOBUINAX TA BUSHAUYCHHS 3MIH eHePreTHYHUX XapaKTepuc-
THK [IOBEPXHEBUX 1 MK a30BHX IIapiB.

Kirouosi cnopa: Mogesmosannss, Mexaniuni Hanpyru, Mexanoesnexrpuusi npouecy, [TosepxueBuit map.

B.H. IOzeBuu!, B.I1. Komau?, P. :xamnal

1 @Quauro-mexanuueckuti uncmumym HAH Vipaunst umernu Ipueopus Kapnenko,
ya. Hayunas, 5, 79601 Jlveos, Ykpaura

Ha ocHoBe mpe/yoseHo# MaTeMaTHIeCKOi MO/ PACCYUTAHBI MEXaHOdJIEKTPUIECKAE XapaKTePUCTU-
KU IIPUIIOBEPXHOCTHOIO CJIOS TBEPJOTO TeJIa, BXOJAIINE B JIMHEHHBIe yPABHEHUSA COCTOSIHUS W KOTOPBIE CBS-
3BIBAIOT IapaMeTphl cocTosHus. [IpefcraBiieHHAs MOJIe/Ib YUUTHIBAET YCJIOBUE KBA3UPABHOBECHUS 3JIEKTPO-
HOB IIPOBOJIUMOCTH (CBA3AHBIX 3apSAI0B) B JBOMHOM 3JIEKTPUYECKOM CJI0€ HA IOBEPXHOCTH TBEPIOro TeJia.
Boepsoie qiis psga matepuasos: Cr, W, Gd, Hf, Pd, Mg, Ta, Sm, Si, Cu ompeaesieHbl Hanboaee BasKHbIE Be-
JIMYWHBI 171 TIOBEPXHOCTHU — IIOBEPXHOCTHLIA U Mesk(a30BHIH 3apay (, 3JIeKTPOCTATUIECKYI0 COCTABIISIONLY IO
IIOBEPXHOCTHOM 9HEPTHHU Je, TOJIIIMHY ITOBEPXHOCTHOTO CJIOS A, eMKOCTh JBOMHOIO aJieKTpudeckoro cyos C u
norennman anpBanu AY. TH BeTMIUHBL MOYKHO MCIIOJIb30BATD JJI TUATHOCTUKA 9JIEMEMEHTOB KOHCTPYKITUN B
arpecUBHBIX CPeJax W OIpeIesIeHNs 3HePreTUUECKUX XapPAKTePUCTHE ITOBEPXHOCTHBIX U MeK(a30BBIX CII0EB.

Knouernie ciosa: MO,I[BJ'IJ'II/IPOBaHI/Ie, Mexannueckne HaIIPpSAKEeHUI, MeXaHOI)JIeKTpI/I‘IeCKI/Ie IIPOITeCCHI,

J. NANO- ELECTRON. PHYS. 8, 04005 (2016)

TloBepXHOCTHBIM CJIO.
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MECHANO-ELECTRIC CHARACTERISTICS OF THE NEAR-SURFACE LAYER...

Table 1 - Physical properties of the surface layers of materials.
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Physical Materils
Nin characteristics Mg Si Cr Fe Co Cu Pd
1. Do, V 3,055 4,234 4,2 3,82 4,705 4,409
2. Zo, V - 5,19 - - - - -
3. 14 0,0237 0,661 1,57 0,552 0,244 0,248 0,068
4. b, V1 1,13 0,107 0,099 0,237 0,4 0,238 0,463
5. kx1010, m-1 1,905 1,32 1,308 2,153 2,450 1,5 1,974
6. 7, dxm -2 1,079 1,182 3,651 3,271 2,520 2,340 2,551
7. Yo, Ixm —2 0,775 0,787 2,243 2,085 1,628 1,513 1,742
8. EX Yy Jxm -2 0,304 0,395 1,308 1,186 0,892 0,827 0,809
9. Q, Clxm-2 0,362 0,303 0,509 0,63 0,594 0,448 0,552
10. h, nm 0,712 0,967 1,024 0,644 0,58 0,901 0,715
11. C, mFxm-2 84,30 58,4 57,86 95,569 108,4 66,3 87,34
12. Ay, V 4,289 8,805 6,616 5,481 6,751 6,316
13. Az, V - 5,19 - - - - -
14. d=2/k, nm 0,105 - 0,153 0,093 0,816 0,133 0,101
15. Electronegativity 1,31 1,9 1,66 1,83 1,88 1,9 2,2
(Pauling)
16. Periodic number in the 12 14 24 26 27 29 46
Periodic system of
elements
Table 2 — Continue
Physical Materils
Ni/n Characteristics Ag Sm Gd Hf Ta W Pt Au
1. | @,V 4,34 3,89 3,37 5,91 6,78 5,045 5,75 4,963
2. Zo, V - - - - - - -
3. | ¢ 0,025 0,035 0,0136 0,0525 0,0174 1,122 0,238 0,119
4. | b, V1 0,6083 0,413 1,2917 0,398 0,465 0,1023 0,138 0,2333
5. | Kx1010, m~-1 1,317 1,375 1,879 1,349 1,391 1,693 1,2095 1,536
6. | #dxm-2 1,5517 1,571 1,289 3,425 4,638 3,680 2,775 2,018
7. | e dxm-2 1,0857 1,010 0,936 2,376 3,313 2,369 1,805 1,333
8. | £y, Jxm-2 0,466 0,561 0,353 1,049 1,325 1,311 0,969 0,685
9. | Q Clxm-2 0,3557 0,351 0,3945 0,5326 0,639 0,596 0,439 0,382
10. h, nm 1,058 0,932 0,737 1,027 1,072 0,815 1,117 1,065
11. C, mFxm-2 58,3 60,86 83,167 59,69 61,56 74,92 53,39 54,69
12. Ay, V 6,104 5,760 4,744 8,923 10,38 7,952 8,223 6,983
13. Az, V - - - - - - - -
14. d=2/R 0,152 0,145 0,1064 0,148 0,144 0,118 0,166 0,162
Electronegativity -
15. (Pauling) 1,17 1,2 1,3 1,5 1,77 2,2 2,4
Periodic number in -
16. the Periodic system 62 64 72 73 74 78 79
of elements

The abbreviations usedin this table are the following :
@y — equilibrium chemical potential of the electrons in the
volume of solids; Zo — the chemical potential of particles that
correspond bound electrical charge in a semiconductor; & —
dimensionless coefficient that describes change in surface
energy by changing the mechanical component of surface

0
energy | 7, +&y,, =y = 7 =& |;

b — electrostrictive coefficient of volume expansion; k — value,
which inverse to distance at which space charge in the surface
layer varies in e — times. The components of surface energy:
7. — electrical component, ¢x yu — mechanical component; Q —
surface charge; h — the thickness of the surface layer; C — the
capacity of the double surface layer; A¥Y — Galvani potential;
AZ — difference of the potentials of double electric layer on the
semiconductor surface (corresponds to related charges);
d = 2/k — the distance between plates of the surface capacitor.
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