Особенности роста наноразмерных слоев Mg₂Si в многослойных рентгеновских зеркалах Si/Mg₂Si

Л.Е. Конотопский*, И.А. Копылец, В.А. Севрюкова, Е.Н. Зубарев, В.В. Кондратенко

Национальный технический университет "Харьковский политехнический институт", ул. Фрунзе, 21, 61002 Харьков, Украина

(Получено 20.01.2016; опубликовано online 21.06.2016)

Электронно-микроскопическими и рентгенографическими методами исследованы особенности роста наноразмерных слоев силицида магния в многослойном рентгеновском зеркале Si/Mg₂Si с периодом 14.7 нм в исходном состоянии и после отжига. Установлено, что в исходном состоянии слои силицида магния представляют собой аморфную матрицу с включениями нанокристаллической фазы силицида магния в неравновесной гексагональной модификации. Формирование силицида магния в гексагональной модификации происходит под действием механических напряжений, источником которых являются слои кремния. Отжиг многослойного рентгеновского зеркала Si/Mg₂Si при T = 723 К приводит к кристаллизации и рекристаллизации слоев силицида магния из аморфной фазы, что сопровождается уменьшением периода рентгеновского зеркала на 7.3 %.

Ключевые слова: Многослойное рентгеновское зеркало, Силицид магния, Рентгеновский фазовый анализ, Электронная микродифракция.

DOI: 10.21272/jnep.8(2).02021

PACS numbers: 68.60. - p, 68.60.Dv, 68.65.Ac

1. ВВЕДЕНИЕ

Выбор материалов для создания высокоотражающих многослойных рентгеновских зеркал (MP3) определяется соответствующими значениями их оптических констант и технологическими возможностями создания на их основе многослойных периодических композиций из чередующихся нанометровых (субнанометровых) сплошных слоев с приемлемой межслоевой шероховатостью. Согласно сформулированному Э. Спиллером правилу выбора материалов для создания MP3 [1], один из двух материалов должен иметь минимальное поглощение в заданной части спектра рентгеновского излучения. К числу таких материалов относятся: Si, C, B₄C и Mg. Первые три из них широко используются для создания МРЗ в диапазоне длин волн 4-14 нм. Что касается Mg, то по оптическим характеристикам он является наиболее перспективным для двух частей спектра рентгеновского излучения: 0.989-2.5 нм и 25.1-35 нм. Первый диапазон представляет интерес для рентгеноспектрального анализа таких химических элементов как Mg, Na, F, O. Второй – для астрофизики, для получения изображений солнечной короны в излучении многозарядных ионов железа ($\lambda = 28.42$ нм) и гелия (λ = 30.38 нм) [2].

Однако использование Mg для создания MP3 ограничивается двумя важными свойствами этого материала: низкая температура плавления $(T_{\rm пл} = 923 \text{ K})$ и высокая химическая активность. Низкая температура плавления ограничивает возможность применения MP3 с магниевыми слоями при повышенных температурах и затрудняет возможность изготовления сплошных сверхтонких слоев.

В результате высокой химической активности, в процессе изготовления и последующей эксплуатации происходит межслоевое взаимодействие Mg с больпинством из перспективных для создания МРЗ материалов, что сопровождается потерей отражательной способности. Компромиссным вариантом может быть переход к химическому соединению на основе Mg. Так соединение Mg₂Si является более тугоплавким ($T_{\rm пл}$ = 1375 K), чем Mg и менее химически активным. По своим оптическим характеристикам Mg₂Si несколько уступает Mg как в коротковолновом диапазоне, так и в длинноволновой части спектра. Вместе с тем, как показывают расчеты для коротковолнового диапазона, Mg₂Si в сочетании с вольфрамом имеет более высокую отражательную способность, чем MPЗ W/Si, традиционно используемые в рентгеноспектральном анализе для контроля химических элементов Mg, Na, F, O.

Значения действительной (*n*) и мнимой (*k*) части показателя преломления Mg и Mg₂Si для длины волны 30.4 нм близки ($n_{Mg} = 0.985$, $k_{Mg} = 0.0028$, $n_{Mg2Si} = 0.965$, $k_{Mg2Si} = 0.0047$), поэтому силицид магния может быть выбран в качестве слабопоглощающего слоя и в длинноволновом диапазоне. Значения *n* и *k* были взяты из СХКО [3].

Несмотря на то, что первые предложения об использовании Mg_2Si в качестве слабопоглощающего слоя рентгеновских зеркал были сделаны более 25 лет назад [4], в настоящее время отсутствует подробная информация об особенностях роста и структуре наноразмерных слоев Mg_2Si . В данной работе изучалась возможность изготовления многослойной композиции Si/Mg_2Si с упором на исследование особенностей формирования слоев Mg_2Si , а также их временной и термической стабильности.

Выбор пары материалов Si/Mg₂Si обусловлен перспективностью применения MP3 на ее основе для диапазона длин волн 25.1-35 нм исходя, во-первых, из оптических констант. Во-вторых, эта эвтектическая пара материалов позволяет избежать межслое-

2077-6772/2016/8(2)02021(6)

^{*} kkana357@gmail.com

вого взаимодействия, как при изготовлении, так и при последующем термическом воздействии, что повышает термическую стойкость MP3 на ее основе.

Исследование структуры слоев силицида магния в составе многослойной композиции Si/Mg₂Si позволяет получить важную информацию о плотности, толщине и шероховатости каждого из слоев благодаря возможности моделирования спектров малоугловой рентгеновской дифракции. Также необходимо отметить, что отсутствие межслоевого взаимодействия в данной системе, облегчает возможность разделения процессов структурно-фазовых превращений, происходящих в каждом из слоев MP3.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Образцы Si/Mg₂Si с периодом (суммой толщин пары чередующихся слоев) d = 14.7 нм (Si = 7.7 нм, Mg₂Si = 7 нм) и количеством периодов N = 30 на стеклянных и монокристаллических Si (111) и Si (001) подложках были изготовлены методом прямоточного магнетронного распыления в среде аргона. Толщина слоев контролировалась путем задания скорости транспортировки подложки над мишенями. Скорость осаждения вещества из мишеней Si и Mg₂Si поддерживалась стабильной.

Структура многослойной периодической композиции Si/Mg₂Si исследовалась методами электронной микродифракции и рентгеновской дифрактометрии с последующим компьютерным моделированием. Для получения изображений электронной микродифракции использовался просвечивающий электронный микроскоп ПЭМ-У. Величина ускоряющего напряжения составляла 100 кВ. Рентгенографические исследования проводились на рентгеновском дифрактометре ДРОН-ЗМ в излучении Cu-Ka1 $(\lambda = 0.15405 \text{ нм})$. При съемке малоугловых рентгеновских дифрактограмм использовался метод съемки (θ -2 θ)-сканирования. Съемка дифрактограмм для рентгеновского фазового анализа осуществлялась в скользящей геометрии (GIXRD) при угле скольжения 2.5 ° [5, 6]. В этом случае проводится съемка отражений с разными (hkl)_i при неподвижном положении поликристаллического образца. Также съемки дифрактограмм для рентгеновского фазового анализа осуществлялись в (0-20)-геометрии. Моделирование спектров малоугловой рентгеновской дифракции выполнялось в программе X-Ray Calc [7] на основе формул Френеля с учетом межслоевой шероховатости.

Измерение радиуса кривизны выполнялось рентгенографическим методом. Съемка проводилась на рентгеновском дифрактометре ДРОН-3М в излучении Cu-K_{a1} ($\lambda = 0.15406$ нм) и Cu-K_{a2} ($\lambda = 0.15444$ нм). Из данных съемки рентгеновской дифракции определялось угловое расстояние ω между максимумами Cu-K_{a1} и Cu-K_{a2}. Напряжения в пленках кремния рассчитывались исходя из измеренных значений радиуса кривизны монокристаллической подложки Si (001) по формуле Стоуни [8].

Отжиг MP3 Si/Mg₂Si проводился в вакуумной камере при давлении $P = 10^{-6}$ Па, в диапазоне температур 373-723 К.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рисунке 1 представлена экспериментальная малоугловая рентгеновская дифрактограмма от MP3 Si/Mg₂Si на стеклянной подложке.

Рис. 1 – Экспериментальная (——) и расчетная (-----) малоугловые рентгеновские дифрактограммы в излучении Cu-K_{a1} от MP3 Si/Mg₂Si с периодом 14.7 нм и с количеством пар слоев N = 30. Расчетная и экспериментальная дифрактограммы разнесены по оси ординат

Следует отметить низкую интенсивность Брегговских максимумов. Это связано с тем, что в жестком рентгеновском диапазоне оптический контраст определяется разницей в плотностях слоев, составляющих МРЗ. Низкая интенсивность осцилляций в значительной степени обусловлена близкими значениями плотностей кремния и силицида магния. Действительно, согласно результатам, полученным из моделирования экспериментального спектра малоугловой рентгеновской дифракции, плотности слоев Mg₂Si и Si составили 2.2 г/см³ и 2.23 г/см³ соответственно (табл. 1).

 ${\bf Taблицa}\ 1$ – Данные, полученные в результате моделирования кривой зеркального отражения MP3 Si/Mg_2Si

Кол-во	Материал	Толщи-	ρ,	Межслоевая
периодов		на слоя,	г/см ³	шерохова-
		HM		тость, нм
1	SiO_2	1.5	2.18	0.9
	Si	7.7	2.23	0.3
30	Mg_2Si	7.0	2.2	0.3

Рассчитанные на основе экспериментальных данных, полученных из малоугловой рентгеновской дифрактограммы, значения плотностей силицида магния и кремния отличаются от табличных величин, соответствующих массивным материалам ($\rho_{c\cdot Mg2Si} = 1.99$ г/см³, $\rho_{Si} = 2.33$ г/см³).

Раннее нами уже были получены различные многослойные композиции с кремнием в качестве одного из слоев, и его плотность варьировалась в пределах 2.27-2.33 г/см³ [9, 10]. При этом мишень кремния распылялась при давлении рабочего газа 0.2 Па. В связи с особенностями распыления мишени силицида магния, минимальное давление рабочего газа в камере составляло 0.3 Па, что является причиной роста слоев кремния с плотностью меньшей табличной.

Для того чтобы подтвердить факт влияния дав-

Особенности роста наноразмерных слоев $MG_2SI...$

ления рабочего газа на плотность слоев кремния, были изготовлены однослойные пленки кремния на стеклянных подложках, полученных при давлении рабочего газа 0.16 и 0.3 Па. Согласно моделированию экспериментальных спектров малоугловых рентгеновских дифракций (рис. 2), плотность однослойных пленок кремния, полученных при давлении 0.16 Па и 0.3 Па, составила 2.33 г/см³ и 2.23 г/см³ соответственно.

Рис. 2 – Экспериментальные спектры малоугловых рентгеновских дифракций в излучении Cu-K_{a1} от пленок Si, полученных при давлении рабочего газа в камере 0.16 Па (——) и 0.3 Па (----). Дифрактограммы разнесены по оси ординат

Плотность слоев силицида магния, рассчитанная из малоугловой рентгеновской дифракции, напротив, больше табличной плотности кубического силицида магния, который получается при стандартных условиях. На рентгеновской дифрактограмме фазового анализа, полученной от MP3 Si/Mg2Si (d = 14.6 нм, N = 30) в исходном состоянии присутствует только гало от аморфных слоев кремния, а рефлексы от кристаллической фазы Mg2Si отсутствуют (рис. 3б). В тоже время, согласно данным, полученным из электронной микродифракции поперечных срезов MP3 Si/Mg₂Si (рис. 3a), слои силицида магния состоят из аморфной и кристаллической фазы. При этом силицид магния кристаллизуется в гексагональной модификации, о чем свидетельствует наличие отражений Mg2Si (402), Mg2Si (412), Mg2Si (621), Mg₂Si (524). Тем не менее, плотность, полученная в результате моделирования экспериментальных спектров малоугловой рентгеновской дифракции, меньше плотности гексагонального (2.35 г/см3) и больше кубического (1.99 г/см³) силицида магния. Это объясняется наличием в слоях Mg2Si аморфной и кристаллической гексагональной фазы силицида магния, так как при моделировании спектров малоугловой рентгеновской дифракции расчетная плотность материалов является усредненной по толщине слоев.

Таким образом, исходя из результатов фазового рентгеновского анализа и электронной микроскопии поперечных срезов MP3 Si/Mg₂Si, установлено, что в исходном состоянии слои силицида магния представляют собой аморфную матрицу с включениями нанокристаллов силицида магния в гексагональной модификации. Это хорошо согласуется с данными о плотности слоев, полученными из моделирования экспериментального спектра малоугловой рентгеновской дифракции. Ж. нано- електрон. ФІЗ. 8, 02021 (2016)

Рис. 3 – Электронная микродифракция поперечного среза MP3 Si/Mg₂Si в исходном состоянии (а) и дифрактограмма в излучении Cu-K_a MP3 Si/Mg₂Si (б)

Следует отметить, что гексагональная модификация силицида магния является метастабильной и для ее формирования необходимы определенные условия. Так в работе [11] Mg₂Si с гексагональной решеткой был получен при давлении 2.5 ГПа и температуре 1173 К. При этом отмечается, что данный материал обладает большей устойчивостью к воздействию минеральных кислот и влажному воздуху, чем кубический Mg₂Si. Формирование гексагональной модификации Mg₂Si возможно и в сплавах Al-Mg-Si [12], при этом в работе [13] сообщается о том, что формирование данной фазы происходит под влиянием напряжений, источником которых является алюминий.

Мы считаем, что в MP3 Si/Mg2Si кристаллизация слоев силицида магния в гексагональной модификации, а не в кубической, связана с действием сжимающих напряжений, источником которых являются слои кремния. О том, что в тонких пленках кремния, полученных методом прямоточного магнетронного распыления, развиваются сжимающие напряжения ($\sigma \approx -1.2 \Gamma \Pi a$) сообщается в работе [14]. Измеренные нами напряжения в однослойных пленках кремния толщиной 450 нм составили порядка 0.7 ГПа. Меньшая величина напряжений, по сравнению с литературными данными, обусловлена тем, что мы осаждали пленки кремния в более низком вакууме ($P = 0.3 \Pi a$).

Для исследования влияния температуры на слои Mg₂Si была проведена серия отжигов образца 1, который представлял собой MP3 Si/Mg₂Si на Si (111) подложке с количеством периодов 30 и толщинами слоев Si = 7.7 нм, $Mg_2Si = 7$ нм в температурном интервале 373-723 К с шагом 50 К. После каждого отжига снималась малоугловая рентгеновская дифрактограмма и измерялся период.

Рис. 4 – Малоугловые рентгеновские дифрактограммы в излучении $Cu-K_{\alpha 1}$ от MP3 Si/Mg2Si в исходном состоянии и после отжига

Термический отжиг MP3 Si/Mg2Si до 573 К не приводит к существенным изменениям положения и интенсивности максимумов на картине малоугловой рентгеновской дифракции (рис. 4). Последующий нагрев MP3 Si/Mg₂Si до 623 К сопровождается увеличением интенсивностей дифракционных максимумов. Также на температурном участке 573-673 К происходит резкое уменьшение периода на 0.51 нм (рис. 5). Такой характер поведения зависимости периода от температуры отжига характерен для многих металл-кремниевых рентгеновских зеркал и это связано, как правило, с формированием перемешанных зон на межслоевых границах МРЗ. Так как система Si-Mg2Si является эвтектической, то возможность взаимодействия слоев кремния и силицида магния исключена. Мы считаем, что уменьшение величины периода МРЗ Si/Mg2Si связано с процессами, происходящими в слоях Mg₂Si, а именно с кристаллизацией.

Для экспериментального подтверждения связи уменьшения периода с процессами кристаллизации в слоях силицида магния, был изготовлен образец 2 с 30 периодным покрытием Si/Mg₂Si, в котором толщина Mg2Si была увеличена в два раза по сравнению с толщиной Mg₂Si в образце 1. Полученный образец был отожжен при температуре 673 К. При этом величина периода многослойного периодического покрытия Si/Mg₂Si в образце 2 уменьшилась на 1.2 нм, что в два раза больше чем в образце 1. Очевидно, что это связано с тем, что толщина слоя силицида магния в образце 2 была в два раза большей, что подтверждает связь уменьшения периода в МРЗ Si/Mg₂Si с процессами, происходящими в слоях силицида магния. Изменение толщины кремниевых слоев при этом не наблюдалось.

Данные, полученные по уменьшению величины периода в образцах 1 и 2, подтверждают факт отсутствия взаимодействия между слоями в MP3 Si/Mg₂Si при нагреве. Это связано с тем, что увеличение толщины одного из слоев рентгеновского зеркала, состоящего из материалов, которые могут взаимодействовать между собой, не должно приводить к увеличению усадки периода в результате действия высоких температур, при условии, что толщины слоев МРЗ достаточны, чтобы полностью сформировать перемешанную зону.

Рис. 5 – Зависимость периода MP3 Si/Mg2Si от температуры отжига

Уменьшение периода МРЗ Si/Mg2Si сопровождается процессами кристаллизации и рекристаллизации слоев силицида магния. Это подтверждается результатами рентгеновского фазового анализа (рис. 6б) и электронной микродифракции поперечных срезов MP3 Si/Mg2Si отожженного при температуре 723 К (рис. 6а). При этом согласно результатам моделирования спектров малоугловых рентгеновских дифрактограмм, плотность слоев силицида магния возрастает с 2.2 г/см³ в исходном состоянии до 2.35 г/см³ после отжига, то есть до значения плотности соответствующей гексагональной модификации. Возросшее различие в плотности слоев Si и Mg2Si объясняет увеличение интенсивности порядков отражения на картине малоугловой рентгеновской дифракции. Увеличение плотности Mg2Si в результате кристаллизации составило 6.8 %, а толщина слоев силицида магния в MP3 Si/Mg2Si при отжиге в температурном интервале 573-673 К уменьшается на 7.3 %. Полученные данные близки и подтверждают связь уменьшения периода с процессами кристаллизации в слоях силицида магния, а также свидетельствуют о том, что моделирование выполнено правильно. Отличие на 0.5 % находится на уровне погрешности, с которой определяется плотность.

Рис. 6 – Электронная микродифракция поперечного среза MP3 Si/Mg₂Si после отжига при температуре 723 K (а). Дифрактограммы в излучении Cu-K_{a1} от MP3 Si/Mg₂Si в исходном состоянии (·····) и после отжига при температуре 723 K (—), полученные в геометрии скользящих рентгеновских лучей (б)

Следует отметить, что напряжения развиваются именно в системе пленка-подложка, так как если отделить пленку от подложки, то напряжения в «свободной» пленке срелаксируют. Поэтому для подтверждения факта влияния напряженных слоев кремния на кристаллизацию силицида магния в гексагональной модификации мы провели следующий эксперимент. На подложку NaCl была осаждена пленка углерода (H = 30 нм), которая впоследствии была отделена от подложки и помещена на медную сеточку, которая используется для получения элек-MP3 тронно-микроскопических изображений. Si/Mg2Si было осаждено на полученную углеродную пленку. Таким образом, было получено MP3 Si/Mg₂Si, в котором кремниевые слои находятся в ненапряженном состоянии. После термического отжига при T = 723 К была снята электронная микродифракция (рис. 7а). Согласно результатам полученным из микродифракции слои силицида магния закристаллизовались в кубической модификации, что подтверждает факт влияния напряжений, источником которых являются слои кремния, на кристаллизацию Mg₂Si.

Важно отметить, что однослойная пленка Mg₂Si также кристаллизуется при T = 723 К в кубической модификации (рис. 76). Это является еще одним подтверждением влияния напряжений, источником которых являются слои кремния, на формирование слоев Mg₂Si в гексагональной модификации.

Рис. 7 – Электронная микродифракция MP3 Si/Mg₂Si, осажденного на углеродную пленку (а). Дифрактограмма в излучении Cu-K_{a1} однослойной пленки Mg₂Si толщиной 1мкм отожженной при температуре 723 К (б)

Необходимо отметить, что слои силицида магния имеют низкий уровень среднеквадратичной шероховатости $\sigma \approx 0.3$ нм, что меньше, чем у таких MP3, как: SiC/Mg, ZrC/Mg, Co/Mg, в которых σ превышает 0.5 нм [15-17]. Теоретически рассчитанный коэффициент отражения MP3 Si/Mg₂Si с реальной структурой слоев составил 36 %, что свидетельствует о перспективности использования этой пары материалов для создания рентгеновских зеркал. Усадку периода, которая наблюдается при отжиге до 673 К можно убрать путем проведения предварительной термической обработки рентгеновских зеркал, изготовленных с заранее рассчитанным большим периодом.

4. ВЫВОДЫ

В данной работе впервые исследованы особенности формирования наноразмерных слоев Mg₂Si и возможность их использования в MP3 Si/Mg₂Si.

Установлено, что плотности слоев кремния и силицида магния отличаются от табличных значений и составляют 2.2 г/см³ и 2.23 г/см³ соответственно. Меньшая плотность кремния, по сравнению с табличной величиной, обусловлена осаждением многослойных покрытий Si/Mg₂Si при относительно высоком давлении рабочего газа 0.3 Па. Большая, по сравнению с табличным значением, плотность силицида магния обусловлена его структурой.

Согласно результатам фазового рентгеновского анализа и электронной микроскопии поперечных срезов MP3 Si/Mg₂Si в исходном состоянии слои силицида магния представляют собой аморфную матрицу с включениями нанокристаллов силицида магния в гексагональной модификации.

Структура MP3 Si/Mg2Si остается неизменной при нагреве до 573 К. В результате термического отжига до 673 К происходит резкое падение величины периода, что связанно с кристаллизацией силицида магния в гексагональной модификации из аморфной фазы Mg2Si и, как следствие, увеличение плотности слоев силицида магния до 2.35 г/см³. При этом в MP3 Si/Mg2Si сохраняется высокий уровень периодичности.

Л.Е. Конотопский, И.А. Копылец и др.

Возрастание плотности Mg₂Si при нагреве приводит к уменьшению коэффициента отражения зеркал Si/Mg₂Si на 10 относительных процентов. Такое уменьшение не является принципиальным с учетом возможности эксплуатации зеркал при повышенных температурах.

Особливості росту нанорозмірних шарів Mg₂Si у багатошарових рентгенівських дзеркалах Si/Mg₂Si

Л.Є Конотопський, І.А. Копилець, В.А. Севрюкова, С.М. Зубарев, В.В. Кондратенко

Національний технічний університет "Харківський політехнічний інститут", вул. Фрунзе, 21, 61002 Харків, Україна

Електронно-мікроскопічними та рентгенографічними методами досліджені особливості росту нанорозмірних шарів силіциду магнію у багатошаровому рентгенівському дзеркалі Si/Mg₂Si у вихідному стані та після відпалу. Встановлено, що у вихідному стані шари силіциду магнію являють собою аморфну матрицю з включеннями нанокристалічної фази Mg₂Si у метастабільній гексагональній модифікації. Формування силіциду магнію у гексагональній модифікації відбувається під впливом механічних напружень, джерелом яких є шари кремнію. Відпал багатошарового рентгенівського дзеркала Si/Mg₂Si при T = 723 К призводить до кристалізації та рекристалізації силіциду магнію з аморфної фази, що супроводжується зменшенням періоду рентгенівського дзеркала на 7.3 %.

Ключові слова: Багатошарове рентгенівське дзеркало, Силіцид магнію, Рентгенівський фазовий аналіз, Електронна мікродифракція.

Features of Mg₂Si Layer Growth in Si/Mg₂Si Multilayers

L.E. Konotopskyi, I.A. Kopylets, V.A. Sevrykova, E.N. ZubarevV.V. Kondratenko

National Technical University "Kharkiv Polytechnic Institute", 21, Frunze St., 61002 Kharkiv, Ukraine

Features of magnesium siliced layer growth in Si/Mg₂Si multilayers in initial state and after thermal annealing were studied by methods of transmission electron microscopy and X-Ray scattering. Asdeposited magnesium silicide layers are amorphous with nanocrystal inclusions of metastable h-Mg₂Si. Formation of Mg₂Si in hexagonal modification occurs under the influence of stress produced by silicon layers. At T = 723 K Mg₂Si layers finished crystallizes in hexagonal modification, with some coarsening of grains. That is accompanied with 7.3 % reduction in period of the Si/Mg₂Si multilayer.

Keywords: X-Ray mirror, Magnesium silicide, X-Ray phase analysis, Electron microdiffraction.

СПИСОК ЛИТЕРАТУРЫ

- 1. E. Spiller, Appl. Phys. Lett. 20, 365 (1972).
- I.L. Beygman, S.A. Bozhenov, I.A. Sitnik, S.V. Kuzin, I.Yu. Tolstikhina, A.M. Urnov, Astron. Lett. **31** No 1, (2005).
- 3. http://www.cxro.lbl.gov/.
- 4. Troy W. Barbee, MRS Bulletin 15, No2 (1990).
- Л.И. Гладких, С.В. Малыхин, А.Т. Пугачев, Дифракционные методы анализа внутренних напряжений (Харьков: НТУ «ХПИ»: 2006) (L.I. Gladkikh, S.V. Malykhin, A.T. Pugachev, Difraktsionnyye metody analiza vnutrennikh napryazheniy (Kharkov: NTU «KHPI»: 2006)).
- M. Birkholz, *Thin film analysis by X-Ray scattering* (Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA: 2006).
- 7. http://sci-progs.com/.
- B.G. Cohen, M.W. Focht, Solid-State Electron. 13, 105 (1970).
- I.O. Zhuravel, Ye.A. Bugayev, L.E. Konotopsky, E.M. Zubarev, V.A. Sevryukova, V.V. Kondratenko, *Tech. Phys.* 59, 701 (2014).
- Y.P. Pershyn, E.M. Gullikson, I.A. Artyukov,
 V.V. Kondratenko, V.A. Sevryukova, D.L. Voronov,
 E.N. Zubarev, A.V. Vinogradov, *Advances in X-Ray/EUV*

Optics and Components VI, 81390N (Bellingham: SPIE: 2011).

- 11. P. Cannon, E.T. Conlin, Science 145, 487 (1964).
- Yasuya Ohmori, Long Chau Doan, Yoshitsugu Matsuura, Sengo Kobayashi, Kiyomichi Nakai, *Mater. Trans., JIM* 42, 2576 (2001).
- W. Ren, Y Han, C. Liu, Solid State Commun. 152, 440 (2012).
- Tai D. Nguyen, Troy W. Barbee, X-Ray Optics, Instruments, and Missions, 3444 (Bellingham: SPIE: 1998).
- Jingtao Zhu, Zhanshan Wang, Zhong Zhang, Fengli Wang, Hongchang Wang, Wenjuan Wu, Shumin Zhang, Da Xu, Lingyan Chen, Hongjun Zhou, Tonglin Huo, Mingqi Cui, Yidong Zhao, *Appl. Opt.* 47, C310 (2008).
- Л.Е. Конотопский, И.А. Копылец, В.В. Кондратенко, *ФИП* 13, 24 (2015) (L.Ye. Konotopskiy, I.A. Kopylets, V.V. Kondratenko, *FIP* 13, 24 (2015)).
- K. Le Guen, M.-H. Hu, J.-M. Andre', P. Jonnard, S. K. Zhou, H. Ch. Li, J. T. Zhu, Z. S. Wang, C. Meny, J. *Phys. Chem.* 114, 6484 (2010).