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The article investigates the structure of small clusters, creating an algorithm for calculating the radii 

of coordination spheres in the structure of such clusters and finding the relationship between the frequen-

cies in the IR spectrum and the characteristics of the most probable cluster in the liquid. 
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1. INTRODUCTION 
 

At the present, there has been several approaches 

to modeling the structure of cluster formation in con-

densed matter. In quasi-crystalline theories the struc-

ture of cluster systems is modeled by lattices of cubic 

type (FCC, BCC, SC), and besides it is presumed that 

the structural properties of clusters' lattices and bulk 

samples coincide. In the space of coordination spheres 

the structure of such a cluster is represented as a sys-

tem of successive coordination spheres with a single 

center in an arbitrarily selected atom. The researching 

of the structure of crystals of the cubic system allowed 

us to obtain the well-known rule, that proves, that the 

radius of the N-th coordination sphere is proportional 

to the square root of the number of the sphere 
 

 1nR R N  (1) 

 

The radius of the first coordination sphere 
1R  de-

termines the type of the crystal lattice; it is associated 

with the geometric dimensions (effective diameter) of 

the particleand the nature of the interaction among the 

particles in the crystal [1] 

In [2] proposed analytical expressions, allowingto 

calculate the radii of coordination spheres and the cor-

responding coordination numbers for cubic lattices by 

number of coordination spheres. For example, for the 

FCC lattice the variation range is written as a formula 
 

   1

1

2
kR a k R k  (2) 

 

where 1, 2, 3, ...k  takes the values of natural num-

bers, a  – the lattice constant,
 1R  – the radius of the 

first coordination sphere. 

Let From the series of natural numbers, it is neces-

sary to eliminate the numbers in accordance with the 

formula [2] 
 

  2 4 8 1 , 0,1, 2, ... , 1, 2, 3, ...q
exclk i q i       (3) 

 

In an ideal FCC lattice, there is no coordination 

spheres with numbers 14, 30, 46, 62,78,exclk 
 

94, ...( 0)q   

In [1] an algorithm for calculating the radii of coor-

dination spheres and coordination numbers on their 

surface, depending on the number for the scope for the 

diamond is offered. 

The radius of the m coordination sphere mr  is de-

termined by the lattice parameter  3.566a A  of a di-

amond and by direction vector 

        , , , 0, 1, 2, ...R w w  and is determined by 

formula 
 

  2 2 2

4 4
m m

a a
r w R      (4) 

 

where     4 1, 2 1, 1, 2, 3, ...mR m m i i  

According to the by authors [1] algorithm, the radii 

have been calculated 192 coordination spheres and the 

number of particles on each of them. All coordination 

spheres are filled. 

In [3] the nanoscale objects and metal clusters is 

modeled with face-centered cubic (FCC), body-centered 

cubic (BCC), and hexagonal density packages, besides 

the interconfiguration of atoms in a cluster corresponds 

to the structure of the bulk sample. For the FCC-lattice 

the radii of the successive coordination spheres are 

defined by the formula 
 

 0nR n   (5) 

 

where 0  –  the diameter solid sphere (atom), n
 
– the 

number of the coordination sphere. 

For the BCC lattice: 
 

 0
3

3
nR n  (6) 

 

The number of balls, locating on the n-th field is de-

termined by the condition 
 

   2 2 2u w u uw w n       (7) 
 

where , ,u w  – the whole numbers. 

In [4] proposes a model of "double barrier of nuclea-

tion", according to which the mechanism of formation of 

a cluster begins with the formation of the crystalline 
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core of the cluster as a unit cell of the Bravais, around 

which is an ordered liquid crystalline shell. The ap-

pearance of the crystal nucleus signifies the first over-

come the energy barrier of nucleation. Further, there is 

a consistent core cell proliferation, ending with an irre-

versible process of crystal growth. 

Different approaches to modeling the structure of 

cluster formations are presented in [5-7]. In all sited 

works [1-7] the common idea is using the principle of 

close packing of hard spheres, that can describe a serial 

arrangement of coordination spheres in real crystals 

and cluster formations. The replacing the solid balls by 

soft spheres in the model doesn't make fundamental 

changes in the results of the calculations, so besides 

the geometrical factors, it is necessary to use physical 

principles of coordination spheres. 

 

2. THE PRINCIPLES OF CREATING THE  

SYSTEM OF COORDINATION SPHERES IN 

SMALL CLUSTERS 

 

The authors of this article in [8-10] proposed a mod-

el of cluster formation in a disordered condensed medi-

um, according to which the core of the cluster is a 

bound state of two particles of the medium (dimer), 

which is built around a system of successive coordina-

tion spheres. The result is a "shell structure" cluster. 

The appearance of defects in the shell structure of the 

cluster leads to the unification and redistribution of the 

mutual arrangement of the coordination spheres com-

pared with the crystalline phase material, which de-

termines the temperature dependence of the coordina-

tion numbers in the structure of the cluster. 

The research of suggested model showed, that the 

formula for calculating the radius of a random coordi-

nation sphere can be represented as 
 

 1n nR R pF  (8) 

 

where 1R  – the radius of the first coordination sphere, 

nF  – Fibonacci numbers, 1, 2, 3, ...p  –  natural num-

bers.  

Relation (8) implies, that in the space of coordina-

tion spheres in a cluster formation allowed only coordi-

nation spheres with numbers matching the sequence of 

numbers Fibonacci 1, 2, 3, 5, 8,13, 21, 34, 55, ...nF , 

and coordination spheres with numbers 

 2, 4, 6,10,16, ..., 2ipF p , other areas, whose num-

bers are not included in these series are not permitted 

by the quantization of coordination spheres 

Using Binet's formula[11], it can be shown that the 

series of the Fibonacci numbers can be represented as a 

power function with the base of the golden section 
 

 
1

5

n
nF    (9) 

 

Using formulas (8) and (9), we obtain the law of 

quantization of the radii of coordination spheres as a 

function of the principal quantum number 
 

  2
1

2
( )

3

n

nR R p  (10) 

 

where  1, 1,2, 3,...n n  – the principal quantum num-

ber,  1.618039...  – the golden section, 1R  – the ra-

dius of the first coordination sphere, whose value is 

determined by the radius of a number of successive 

coordination spheres. 

Fibonacci numbers can be expressed in terms of 

Chebyshev polynomials [12], or use the trigonometric 

interpretation of the Fibonacci series [13] 
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1
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  (11) 

 

Taken The series of Fibonacci numbers according to 

formula (11) is defined by two integers n
 
and l , which 

can be interpreted as the principal quantum number n  

and the orbital quantum number l  of the electron, 

when it moves on the surface of the coordination 

sphere. The relationship among the integers in the 

formula (11) coincides with the rules of quantization of 

orbital angular momentum of electrons in complex at-

oms:   0,1, 2, ... , 1 .l n  

 

3. THE FREQUENCIES OF LIBRATION DIMERS 

IN THE CLUSTER'S STRUCTURE 
 

In [8, 10], the authors obtained the ratio to calcu-

late the frequency libration dimer in the cluster with 

the most probable number of particles 
 

 dim

dim

2 ˆ
i i

H

J



   (12) 

 

Equation (12) shows that the frequency librational 

of dimer in the cluster structure is determined by the 

number of particles in the cluster ˆ
i , the characteris-

tics the possible configurations of the dimer (energy of 

formation dimH , moment of inertia of the dimer dimJ ). 

During the spontaneous decay of the cluster num-

ber of particles in its composition changes and becomes 

equal ˆ j , then the frequencies of libration vibrations of 

dimer in the newly formed cluster will be 
 

 dim

dim

2 ˆ
j j

H

J



   (13) 

 

Changing the frequency is accompaniedwith the 

emission or absorption of a quantum of energy with a 

frequency 
 

 dim

dim 1

ˆ2 ˆ 1
ˆ
j

ij j

j

H

J




      
 
 

 (14) 

 

On the assumption that the root of the parenthesis 

in the formula (14) remains constant, it is possible to 

assign this value equal to the square root of the ongo-

ing "golden section", i.e. 1
ˆ ˆ 5 8 0.625j j    , then 
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the formula (14) can be written as a ratio 
 

 dim

dim

2
0.2094ij j

H
F

J



   (15) 

 

where 1, 2, 3, 5, 8,13, 21, 34, 55, ...iF   – the Fibonacci 

numbers 

The set of frequencies in the IR spectra of the liquid 

is determined according to the formulas (12) and (15), 

an ordinary relation [8] 
 

 min,i i ipF   (16) 

 

The existence of spectral bands in the IR spectra 

suggests certain rules of quantization of libration di-

mers in the structure of the clusters, which coincides 

with the quantization rules (10) or (11) of the coordina-

tion spheres in the cluster systems. 

Comparing formulas (8) and (16) gives a ratio 
 

 
min,

1

j

i iR
R


   (17) 

 

The accepted model of the IR spectra in organic liq-

uids allows to predict the position of the spectral bands 

according to the radii of of the coordination spheres in 

the structure of the most probable cluster with an error 

of about 5 %.The calculations of frequencies in the IR 

spectra of liquid with various molecular structure and 

crystals which are created using formulas (16) and (17) 

have shown that in complex spectra of these objects 

there were always been the spectral lines correspond-

ing with the number of cluster formations of the parti-

cles out of the Fibonacci numbers. 

 

4. CONCLUSIONS 
 

The distribution of the clusters of the number of 

particles contained in their composition suggests the 

existence of clusters with the most stable configuration, 

and with the number of particles determined by a 

number of the Fibonacci numbers. Consistent decay of 

the selected cluster number of particles from the Fibo-

nacci series takes place according to the rule, when the 

newly emerged cluster has the same number of parti-

cles from the series of the Fibonacci numbers and the 

ratio of the number of particles in two successive trans-

formed clusters equal to the "golden" cross-section 

0.618...   remains unchanged. Changing the fre-

quency of libration vibrations of dimer by varying the 

number particles in the cluster structure is accompa-

nied with emission of a photon with a frequency pro-

portional to the square root of the number of particles 

in the cluster. 
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