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1. INTRODUCTION 
 

The study of bound-state solutions of the three fun-

damental equations: relativistic Klein-Gordon equation 

(for scalar bosonic particles like pions with spin zero) 

and (Dirac and it’s adjoint) equations for the electron 

and positron with spin 1/2 for negative and positive 

charge and the same mass and non-relativistic Schrö-

dinger equation (for the electron) are played crucial 

roles for describing physics phenomena in gauge theo-

ry, standard model, and quantum mechanics at high 

and low energy, in the case commutative and non 

commutative spaces, respectively. The exact solutions 

for a Colombian and for an Harmonic oscillator as well 

as in an arbitrary number of spherical and non spheri-

cal potentials represent a typical models in quantum 

mechanics and Dirac theory, in two and three dimen-

sions spaces, like (s.o.f.p.) potential [1-31]. In 1947, 

H. Snyder, who introduce the notions of an increasing 

interest in noncommutative geometry both in mathe-

matics and in physics, which represent a hop to obtain 

new and profound interpretations at Planck's and Nano 

scales [12]. The rich mathematical structure of the 

noncommutative theory gives a rise to the hop to get a 

better understanding of physics phenomena at small-

ness distances like Planck's and Nano scales. The phys-

ical idea of a noncommutative space satisfied by a new 

mathematical product, we replace the ordinary product 

by star product and the new noncommutative operators 

will be functions of the old operators and its derivative. 

From the references [9-26], we can deduce the new star 

product between two functions f(x) and g(x) modified by 

(c  ħ  1): 
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The above relation valid in the first order of the an-

tisymmetric parameters (  and  – ) matrixes, here 

            f x g x f x g x f x g x     , , 1,N    and 

N denote to the dimensions of the space. As an immedi-

ately consequence of the above star product is the satis-

faction of the important two commutators, which are 

playing a crucial role in noncommutative space-phase, 

as:  
 

 ˆ ˆ, and , iji j ij i jx x i p p i 
 

         (2) 

 

The objective of this paper is to study of the effect of 

the noncommutativity of space and phase on Hydrogen 

atom with typical rational spherical potential like 

(s.o.f.p.) potential, in both noncommutative two dimen-

sional real spaces and phases (NC-2D spaces and phas-

es). The physical importance of the (s.o.f.p.) potential ap-

pears in many quantum physics and chemical phenome-

na [2]. A Boopp's shift method will be used in present 

article, instead of solving the (NC-2D spaces and phases) 

Schrödinger equation by using star product procedure: 
 

 ˆ ˆ ˆ ˆ, and , iji j ij i jx x i p p i          (3) 

 

The star product replaced by usual product together 

with a Boopp's shift [14, 15, 20-26]: 
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 (4) 

 

It’s clearly that, the noncommutativity applied in 

present work concerned both the spatial operators and 

the impulsions operators. The rest of present article is 

organized as follows: In newt section, we briefly review 

the Hydrogen atom in ordinary 2 D spaces with (s.o.f.p.) 

potential. The Section 3, reserved to derive the de-

formed Hamiltonians of the Hydrogen atom with 

(s.o.f.p.) potential and by applying the perturbation the-

ory we find the quantum spectrum of the lowest excita-
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tions in (NC-2D spaces and phases) for (s.o.f.p.) poten-

tial. In section 4, we examine the obtained results. Fi-

nally, the important found results and the conclusions 

are discussed in last section. 

 

2. THE (S.O.F.P.) POTENTIAL IN ORDINARY 2D 

REAL SPACE 
 

As it’s mentioned in the previously section, the 

(s.o.f.p.), represent a good example of a central typical 

rational spherical potential V(r), the important of this 

potential  appears in many quantum physics and chem-

ical phenomena, which proportional on the inverse of 

two terms r1/2 and r3/2 as [2]: 
 

   1/2 3/2

a b
V r

r r
   (5) 

 

Where a and b are two both real constants character-

ized the nature of studied subject. It is known that the 

nonrelativistic Schrödinger equation describing a fer-

mionic particle moving in (s.o.f.p.) central potential, in 

polar coordinates  ,r r  , can be defined by the follow-

ing equation  1c   [2]: 
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 (6) 

 

Where m0 and E are the ordinary mass of a fermionic 

particle and the energy, respectively. The complex 

wave function  r   is written as follows:  

 

    
 exp

R r
r im

r
    (7) 

 

Where m denote to the eigenvalue of the operator Lz. 

The radial function R(r)  satisfied the following equa-

tion [2]: 
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The complete complex wave function and the quan-

tum spectrum of the lowest excitations corresponding 

to (stationary state: 
   0

m r  and
 0

mE , first excited 

states: 
   1

m r  and
 1

mE ) and P  th order excited states: 

   p

m r  and 
 p
mE   are, respectively [2]: 
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3. THE (S.O.F.P.) POTENTIAL IN NC 2D SPACES 
 

3.1 The Perturbative (S.O.F.P.) Potential 
 

To obtain, the Schrödinger equation on NC quan-

tum mechanics, we replace: ordinary Hamiltoni-

an  ˆ ,i iH p x , ordinary complex wave function  r , 

sofpE  and the old product by: NC Hamiltonian 

 ˆ ˆ ˆ,i iH p x , NC complex wave function  r , NC energy  

nc sofpE   and star product , respectively [20-26]: 

 

      ˆ ˆ ˆ,i i nc sofpH p x r E r   . (10) 

 

Know, we apply the Boopp’s shift method on the 

equation (10) to obtain, the reduced Schrödinger equa-

tion: 
 

      ˆ ˆ,i i nc sofpH p x r E r   (11) 

 

Where the two operators in (NC-2D) ˆ
ix  and ˆ

ip  are 

given by: 
 

 ˆ ˆand
2 2

ij ij

i i j i i jx x p p p x
 

     (12) 

 

Which allow us to obtaining, in (NC-2D) space and 

phase, the four new operators 1
ˆ ˆx x  , 2

ˆ ˆy x , ˆ
xp  and 

ˆ
yp  respectively as: 
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Here 12  and
12

  , as a direct result of the 

above equations, the two operators 2r̂  and 2p̂  in (NC-

2D spaces and phases) can be written as follows [21-24]: 
 

 

2 2

2 2

ˆ

ˆ

z

z

r r L

p p L





 

 
 (14) 

 

Here  z y xL xp yp  , furthermore, one can show 

that, the only none null, the two commutators ˆ ˆ,x y    

and ˆ ˆ,x yp p 
   are written as follows [21-25]: 
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On based, on the eq. (14), to obtain, after a straight-

forward calculation, the three important terms, which 

use to determine the (NC-2D spaces and phases) 

(s.o.f.p.) potential: 
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The operator of (s.o.f.p.) potential  ˆsofpV r  and NC 

kinetic term 
2

0

ˆ

2

p

m
in (NC-2D spaces and phases) are 

determined from the projection equation:  
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The eq. (17) allows us to obtaining, the potential op-

erator  ˆsofpH r  as: 
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It’s clearly, the two first terms are given the ordi-

nary (s.o.f.p.) potential, we note to the rest terms by 

 sofp pH r : 
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After a straightforward calculation, one can prove 

that the noncommutative modified radial function sat-

isfied the following equation: 
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It’s clearly that the modified potential  sofp pH r  is 

proportional to two parameters   and  . 

 

3.2 The Exact N.C. Modification of the Energy 

Levels for Stationary State 
 

The exact NC modification of the energy levels, in 

the first order of   and  , for the stationary 

state 0ncE , can be determined by applying the pertur-

bation theory and using Eqs. (9.1) and (19): 
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Where
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, the above rela-

tion, reduced to the form: 
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Where, the three terms 1
sofpL , 2

sofpL  and 3
sofpL  are de-

termined from the two relations, respectively: 
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If we change the variable r  by new variable 2,X  

then the above two equations are reducing to the form: 
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Now, using the special integral [32]: 
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Where vD , is the parabolic cylinder function, as a 

condition ( Re ( ) 0l  and Re ( ) 0l v ),  v  is gamma 

function, which allow us to obtaining the factors: 1
sofpL  
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, 2
sofpL  and 3

sofpL , respectively as 
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Then, the modified energy eigenvalues 0ncE  can be 

written as: 
 

  2
0 02 , , , ,ncE a mF m a b    (27) 

 

Where the factor  , ,F m a b  is given by: 
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3.3 The Exact N.C. Modification of the Energy 

Levels for First Excited State 
 

Furthermore, the exact NC modification of the en-

ergy levels for first excited state 1ncE , in the first order 

of  , can be determined by using perturbation theory 

and Eqs. (9.2) and (19): 
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The above integral can be written as follows: 
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similarly to previous integrals, we introduce also, new 

variable 2r X . After a straightforward calculation we 

can obtain: 
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By applying the special integral represented by eq. 

(25), we obtain the exact values of ofpS  , as follows: 
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Which allow us to obtaining the energy corrections 

1ncE  to first excited state for (s.o.f.p.) potential in (NC-

2D spaces and phases). 

 

3.4 The Atomic Quantum Spectrum of Lowest 

Excitations States for the Magnetic Effect 
 

Now, we summarize the obtained results of the 

quantum spectrum of the lowest excitations corre-

sponding to (stationary state and first excited states), 

( 0ncfE and 1ncfE ), corresponding to the first order of 

  and  , respectively: 
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and the obtained corrections. Thus, on based on equa-
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ly results for the quantum spectrum of the lowest exci-

tations in (NC-2D spaces and phases): 
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Furthermore, we can construct the deformed (NC-2D 

spaces and phases) Hamiltonian ncsofpH  as a sum of two 

fundamental operators sofpH  and sofp mH  , the first one 

is only the ordinary Hamiltonian operator for (s.o.f.p.) 

potential in 2D space, while the second operator, which 

determined on based to eq. (19) as follows: 
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the global angular momentum and  SB  denote to 

the ordinary Hamiltonian of Zeeman Effect ZH  [9]: 
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The operator sofp mH   denote to the modified Zee-

man effect, in (NC-2D) real space. It’s important to 

notice that  l m l    , and then we have  2 1l   pos-

sible values form , thus every state will be  2 1l   sub- 

states under the magnetic effect. 

 

3.5 The Atomic Quantum Spectrum of Lowest 

Excitations States for Spin-orbital Effect 
 

On another hand, it’s possible to rewriting eq. (19), as: 
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We oriented the direction of spin parallel of the (Oz) 

axes, let us write the spin-orbital interaction SL  as 

follows [9]: 
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This allows us to obtaining the modified potential op-

erator for (s.o.f.p.) potential: 
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A similarly calculation of previously section gives 

the modified recent quantum spectrum of the lowest 

excitations  0 , ,NCsofpE j l s  and  1 , ,NCsofpE j l s , corre-
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sponding spin-orbital interaction, respectively: 
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 (41.1) 

 

and 
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(41.2) 

 

Where the two important factors 
1

,
2

L j l s
 

  
 

 and 

1
' ,

2
L j l s

 
  

 
 are determined from the following rela-

tions: 
 

 
1 1 1

, and ' ,
2 2 2 2

L j l s L j l s
   

         
   

(42) 

 

Then, we can construct a diagonal matrix of or-

der  2 2 , with elements  
11nc sofpH  ,  

22nc sofpH  , 

 
12nc sofpH  and  

21nc sofpH   , as it has been constructed 

in our four references, respectively  [21-24]: 
 

 
2

2 2 1/2 3/211
0
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1 1 1

2
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2 24 4 2 2
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b a a b l
SB JB

m mr r r r



  
 



    
            

     
          

     

(43.1) 

 

and 
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2
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H H



  
 



 

    
            

     
                 


  

(43.2) 

 

It’s clearly, from the obtained results for states of 

energy (40) are degenerated and different with ordi-

nary energy (9), it is depended with three quantum 

numbers  , ,j l s , furthermore it describes two fermion-

ic particles, the first with spin up and spin down as it 

has been observed in Dirac theory at high energy. It’s 

worth to notice that 
1

2
j l   and then we have 2 possi-

ble values for j , thus every state will be 2 sub- states 

under the effect of spin-orbital interaction.  

 

4. EXAMINATIONS OF OBTAINED RESULTS 
 

As a typical application, let us consider an electron 

with spin down transition from first excited state to the 

stationary one; after a straightforward calculation, we 

can obtain the expression of produced energy 

 1 0NC sofp ncf ncfE E E    and the modified ionization 

energy ion sofpE  as: 

 

   
  

 

14/3

2/3 2/3

3

2

2
2
0

1 1
2 , , , , ,

14 4

2 , , , , .
1

8
2

NC sofp m

ion sofp

E a S a b E

a
E a m F m a b

m

  

   





 
     
 
 

 
 
  

  
  

  

(44) 

 

The first terms are the ordinary produced energy 

and ionization energy, while the add parts are the con-

tributions of the physics proprieties of (NC-2D spaces 

and phases). The obtained results were proportional to 

the infinitesimal parameter  . Finally, when the pa-

rameters ( and 0   ), in the obtained results for 

(NC-2D) spaces: ((10), (15), (19), (35), (36), (38), (40), 

(41), (43) and (44)) we obtain all ordinary 2D space re-

sults for (s.o.f.p.) potential, which prove the correct 

obtained recent results. Regarding, two obtained spec-

ters for the magnetic and spin-orbital interaction, one 

can deduce that every state degenerated to  2 2 1l   

sub states, as it has been obtained in our reference 

[22]. Know, the global quantum spectrum of lowest 

excitations states (fundamental  0 , , ,NCE m j l s  and 

first excited states  1 , , ,NCE m j l s ) for Hydrogen atom 

with (s.o.f.p.) potential: 
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 (45.1) 

and 
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Finally, it’s important to notice that, the using of 

complex coordinates, which indicted in reference [25], 

permitted to obtain two terms of perturbations; this is 

deferent totally for our present work and [22-24], based 

on real coordinates, which allow us to obtaining only 

one term of perturbation. 

 

5. CONCLUSIONS 
 

We have used the Boopp's shift method and pertur-

bation theory to study the effect of the non commuta-

tivity on the central typical rational spherical potential 

like (s.o.f.p.) potential in (NC-2D spaces and phases). 

The exact global atomic quantum spectrum of lowest 

excitations states were reported, we observed the every 

ordinary state of energy was changed radically and 

degenerated to  2 2 1l  sub-states, depended with 4 

quantum numbers: m  and  ,    and  j l s , and corre-

spond two fermionic particles, the first with spin up 

while the second with spin down as it was observed in 

Dirac theory at high energy. 
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