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A simple combustion method based on principles of propellent chemistry in which Polyvinyl alcohol 

(PVA) as fuel and nitrates as oxidizer were used for synthesizing the perovskite like LaMnO3 powders. The 

oxidizer to fuel ratio was maintained at 5 : 1. The darkish black powder obtained was calcined at 800 C 

and 1000 C for 5 hour. The combustion and thermal decomposition of the precursor were investigated us-

ing the TG-DTA and Fourier Transform Infra-Red (FT-IR) techniques. The X-ray diffraction (XRD) pattern 

of all three samples i.e., un-heated LaMnO3 powder (LMO-UH), calcined at 800 C (LMO-800) and at 

1000 C (LMO-1000) were carried out. The single phase orthorhombic crystal structure was revealed to 

crystallize at LMO-800 and LMO-1000 with elevation in the crystalline size. A small impurity peak at 28.7 

was seen of Mn3O4 for LMO-UH, which vanished after calcining it. The strong absorption in FT-IR spectra 

found at around 615 cm – 1 was due to the formation of metal-oxygen (M-O) bond. Moreover a small shift in 

this M-O bond with increase in calcination temperature suggested the strained LaMnO3 compound. Ele-

mental analysis using the energy dispersive X-ray fluorescence spectrometer (EDXRF) indicated the presence 

of La and Mn with increase in the Mn contents after calcinations. The oxygen, nitrogen and hydrogen content 

in the sample were determined from the ONH analysis indicating a decrease in the oxygen content for LMO-

800. Well defined porous-foam like morphology of the sample was achieved from scanning electron microscop-

ic (SEM) study, which become compact with calcination process. Magnetic properties were found to transform 

from the ferromagnetic-to-paramagnetic phase for LMO-UH sample, while reduction in magnetization values 

and coercivity at low temperatures was obtained for LMO-800 and LMO-1000 samples. 
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1. INTRODUCTION 
 

A strong interplay between the structural distor-

tion, transport and magnetic properties of the perov-

skite manganite particularly, LaMnO3 depict interest-

ing physical properties such as antiferromagnetic-

insulator, ferromagnetic-metal as well as charge-

ordering phenomenon [1-4]. In addition to antiferro-

magnetism, the parent compound LaMnO3 probably 

shows some novel phenomenon such as spin-canting, 

spin-glass, ferromagnetic-insulator with the substitu-

tion of cations at different sites [5-6]. The correspond-

ing properties arise depending on the off-stoichiometric 

cation substitution on the lanthanum or manganese 

site [7]. Such a system results into decisive magnetic 

properties of the LaMnO3 giving the colossal magneto-

resistance (CMR) effect and other novel magnetic phe-

nomenon. Recently, researcher tried to develop its 

structural as well as physical properties by substitut-

ing different types of divalent or tetravalent cations to 

behave like the hole or electron-doped system, respec-

tively [8]. The cation substitution effect into the LaM-

nO3 matrix, enhances the magnetic properties by cou-

pling mechanism and novel Jahn-Teller distortion in 

MnO6 octahedron [9-11]. However, the Lanthanium 

and / or oxygen non-stoichiometry in the LaMnO3 com-

pound produces the vacancies. This results into either  

La1 – xMnO3 or LaMnO3  δ system that exhibits proper-

ties of self-doping effect and produces the mixed va-

lence state of the Mn viz. Mn3 + and Mn4 + to fulfill the 

charge neutrality [12]. This establishment of the mixed 

valence state in the LaMnO3 compound enhances the 

coexistence of ferromagnetic double exchange and anti-

ferromagnetic super-exchange interactions. 

Importantly, all the structural and physical proper-

ties of the LaMnO3 compound depend on the method 

used for synthesis [13-15]. Available reports suggest 

that there are several physical as well as chemical 

methods for the synthesis of the LaMnO3 compound 

both in powder / pellet and thin film forms [13-18]. It is 

found that two phases viz. orthorhombic and rhombo-

hedral can be synthesized at room / elevated tempera-

tures by using both the aforementioned methods. Signif-

icantly, these two phases compete with each other de-

pending on the oxygen off-stoichiometry, which forms 

the deficiency in the crystal structure. As a result the 

system behaves as self-doped system and exhibit the 

interesting CMR effect as discussed earlier [19, 20]. The 

oxygen off-stoichiometric self-doping of the LaMnO3 can 

possibly lead in the distortion of the MnO6 octahedron 

due to the Jahn-Teller effect that arises during the 

formation of the mixed valence state of the Mn3 + and 

Mn4 +. Orgiani et al. [21] showed that the mixed valence 

Mn3 +/Mn4 + population is obtained by self doping of Mn 

into the La site and resultant La3 +/Mn2 + induces the 

required distortions in the MnO6 cage. The produced 

distortion in the MnO6 octahedron favours the hooping 

of the charge transportation through the corresponding 

site of LaMnO3 viz. La3 +/Mn2 + rather than traditional 

Mn3 +/Mn4 + path and this is the key point to the for-
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mation of the ferromagnetic state in the LaMnO3 com-

pound [21, 22]. Conclusively, the deficiency in the metal 

side (La or Mn) can create Mn4 + (holes) and in order to 

neutralize this hole, the LaMnO3 system should estab-

lish self-doping phenomenon. The neutralization of the 

hole by self-doping can cause the delocalisation of the 

electron in the vicinity of the perovskite structure of 

LaMnO3. This delocalisation forces the spins to align 

ferromagnetically in a-b plane. Such a magnetic phase 

transition in the LaMnO3 compound is found recently; 

eventhough the magnetic structure has been known 

from anciently [23, 24]. The Jahn-Teller distortion in 

the system is reduced by giving the heat treatment at 

comparatively higher temperature, but interestingly 

structure remains in the orthorhombic phase, which 

crystallizes in the same pbnm space group [23]. This is 

because the oxygen does not allow to occupy the inter-

stices of the perovskite LaMnO3, hence, it produces the 

cation vacancies. The corresponding lattice of the struc-

ture easily adopts the excess oxygen from the stoichio-

metric phase of the LaMnO3 [25, 26]. Above mentioned 

reports suggest that instead of doping LaMnO3 exter-

nally to achieve enhanced magneto-transport proper-

ties; one can achieve similar properties by self-doping of 

LaMnO3. Such a self-doping mechanism can be achieved 

by simply calcining the LaMnO3 at different tempera-

tures, varying the La / Mn ratios and/or by oxygenating 

the LaMnO3 compound. 

Therefore, the present work is an attempt to study 

this temperature-dependent transformation of LaMnO3 

powder samples. It is a try to visualize the correlation of 

the crystalline structure and the magnetic property of 

the LaMnO3 synthesized by the simple chemical com-

bustion method. Moreover, the influence of the calcina-

tions temperature on the structural and magnetic prop-

erties of the perovskite LaMnO3 powder have been stud-

ied and discussed herein. 

 

2. COMBUSTION SYNTHESIS AND THERMAL 

DECOMPOSITION ANALYSIS 
 

Chemical combustion synthesis is a simple exo-

thermic chemical reaction process that occurs between 

the fuel and the oxidant according to the principles of 

the propellant chemistry. Here in the present synthesis 

we have used poly vinyl alcohol (PVA), which is a syn-

thetic polymer that acts as a fuel. This is for the reason 

that it gets easily oxidized by nitrate ions. There is a 

general assumption that PVA conducts the redox reac-

tion with nitrate to ignite the combustion reaction, so 

that the nitrates partially decompose after heating. 

The decomposition of the nitrates releases the nitrogen, 

carbon monoxide, and water molecule in the gaseous 

form. Therefore, we took 4.33 gm of La(NO3)3, 1.8 gm of 

Mn(NO3)3 and 2.07 gm of PVA as source materials to 

prepare 0.1 M solution for the combustion reaction 

process. Importantly, an equivalent weight ratio of 5:1 

is maintained between oxidant and the fuel. Thermal 

decomposition of the above synthesized material have 

been studied by measuring the TG-DTA of LaMnO3, 

which is shown in the Fig. 1. It is seen from Fig. 1 that 

the endothermic peak appears at ~ 70 C with respec-

tive weight loss of 18 %. This endothermic peak is ap-

peared due to the vaporisation of surface absorbed 

volatile aqueous liquid like water in the composite 

fabric. Moreover, the extreme reduction in weight loss 

was occurred at 490 C, which designates the coupling 

of DTA peaks with TGA weight loss. This indicates that 

the autocombustion reaction step occurs at 490 C due 

to the decomposition of the reactant viz. nitrate, ace-

tate, PVA etc. by showing the exothermic peak at the 

corresponding temperature. The total weight loss dur-

ing the decomposition is up to 56.85 %. At this stage 

the oxidation of main chain in the PVA is accompanied 

by the reaction. TG-DTA curves are stable above 

700 C indicating that all the aqueous liquids, organic 

compounds as well as all nitrate and acetate in the 

composite fabric were completely volatized and porous 

inorganic compound of LaMnO3 could be obtained 

above 700 C. This obtained information was useful for 

further calcining our synthesized material at 800 C 

and 1000 C and hence to study the influence of the 

calcining temperature on the material properties. 
 

 
 

Fig. 1 – Plot of TG-DTA for thermal decomposition analysis of 

LMO sample 
 

The structural studies were carried out using X-Ray 

diffractometer model D3-phaser. The chemical composi-

tion of the elements present in the material was studied 

using Energy dispersive X-ray fluorescence (EDXRF) 

model ARL™ QUANT'X EDXRF Spectrometer and with 

ONH analyzer. Surface morphology was studied using 

scanning electron microscopy (SEM) model JEOL JSM-

6360. Magnetic measurements were done using SQUID 

from Quantum design model MPMS3. 

 

3. RESULTS AND DISCUSSION 
 

X-ray diffraction (XRD) spectra are displayed in the 

Fig. 2 (a) that was carried out for the structural phase 

determination. The complete phase transformations 

with different heat treatments are clearly depicted from 

the obtained XRD data. LMO-UH showed LaMnO3 sam-

ple peaks along with some impurity peaks at 2θ  28.7. 

This peak originates from the un-reacted Mn3O4. The 

orthorhombic structure having single phase was ob-

tained from the JCPDS data card no. 00-033-0713 for 

LMO-800 sample. In addition to this a broad hump 

around 2θ ~ 28 with low angle shift in the peak posi-

tions was obtained for LMO-1000 sample. The average 

crystalline size of LMO-800 was calculated to be 11 nm; 

while, for the LMO-UH and LMO-1000, it is 7 nm and 

13 nm, respectively. The modification of crystalline state 
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in the case of LaMnO3 calcined at 800 C is due to the 

reduction of excess oxygen in the interstitial sites ac-

companied with formation of the Mn3 + state [27]. This 

elevation in the crystalline size of LMO-800 may result 

into the reduction of the ferromagnetic-metallic behav-

iour of LaMnO3. The result of rietveld refinement fitting is 

displayed in the Fig. 2 (b), especially, done for LMO-800 

sample. The rietvield refinement confirms the single 

phase orthorhombic structure fitted in the pbnm space 

group with no detectable secondary phase when the sam-

ple is calcined at 800 C. The discrepancy factors obtained 

from the rietvield refinement were; Rp  45.5 %, 

Rwp  36.0 %, Rexp.  27.15 % and χ2  1.75. The lattice 

parameters obtained from the rietvield fitting are  
 

 
 

 (a) 

 
 

 (b) 

 

(c) 
 

Fig. 2 – (a) XRD of LMO-UH, LMO-800 and LMO-1000 sam-

ples. (b) Reitveled fitting and crystal structure of LMO-800 (c) 

Structural Model of LMO-800 showing distortions in MnO6 

octahedra 

a  5.5461 Å, b  5.5990 Å, c  7.8152 Å and 

      90. Apart from this a small distortion [see 

Fig. 2 (c)] in the structural model of the LaMnO3 in MnO6 

cage appeared due to the localized stress field during the 

crystallization process. The resultant physical properties 

viz. magnetization, transportation of the charge carriers 

are strongly affected on this structural distortion. As 

prepared sample shows the small Mn3O4 impurities phase 

in addition to the orthorhombic LaMnO3. Further calcina-

tions of the LaMnO3 powder at 1000 C shows the slight 

shift at lower angle due to the residual stress field pro-

duced at higher temperature, which also produce the 

defect in the material and may give a hump in the back-

ground signal [28]. So, the more crystalline nature of the 

compound calcined at 800 C shows the occurrence of 

complete combustion reaction [29]. 

Fig. 3 (a) illustrates FT-IR spectra of LaMnO3 per-

ovskite compound. For LMO-UH sample, one can see a 

broad peak originating around 585 cm – 1. This peak is 

found to be shifted towards higher frequency i.e., 

615 cm – 1 when calcined at 800 C and 1000 C for 

samples LMO-800 and LMO 1000, respectively. The 

obtained peak at 615 cm – 1 is reported to be of the 

stretching mode, which involves the internal motion of 

a change in Mn-O-Mn bond length [30]. 

This is an indication that the metal-oxygen (M-O) 

bonds are subsequently organized into a MnO6 octahe-

dral structure, representing the formation of crystal-

line LMO powder containing the perovskite structure 
 

 
 

 
 

Fig. 3 – (a) FT-IR of LMO-UH, LMO-800 and LMO-1000 

sample. (b) Enlarge FT-IR data for LMO-UH, LMO-800 and 

LMO-1000 
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material [31], which is in concurrence with our XRD 

result [Fig. 2(a)]. Moreover, the intensity found for this 

vibration band increases when the sample is calcined at 

800 C and 1000 C, suggesting that the vibration bands 

become strong and up-shifting. Interestingly, we ob-

served an apparent splitting of the M-O bond for LMO-

800 and LMO-1000 [see dotted lines in Fig. 3 (b)], which 

was not observed for LMO-UH sample. This can be in-

terpreted as a structural doublet that is allowed by the 

non-centrosymmetric MnO6 octahedric groups [32, 33]. 

Such symmetry of MnO6 group may be correlated to 

manganese ions that are in mixed valence states i.e., 

Mn3 + and Mn4 +. This could be resulting from the Jahn- 

Teller effects, which is partly related to the average ionic 

radius of the A sites and / or the oxygen deficiency. 

Moreover, it can also be based on the association with a 

supplementary polarization (dipole moment) of Mn-O 

bonds. With the calcinations, the changes in the LMO 

compound produce the shifting of M-O to higher fre-

quencies determined by a decrease of symmetry of the 

lattice. This is the effect of the increase of the crystallites 

concentration per volume unit and the decrease of the 

MnO6 groups symmetry i.e., in agreement with the XRD 

data [see Fig. 2 (a) and (b)]. Apart from this there are 

several other vibration bands found around ~ 1100 cm –

 1, 3000 cm – 1, 3500 cm – 1, which appeared due to the 

impurity phases viz., C-H bending and / or originating 

from the consumed fuel i.e., PVA during the formation of 

the La-Mn-O perovskite material [34]. 

Fig. 4 illustrates the EDXRF spectra of a typical 

LMO-UH sample, while the compositional data for all 

the LMO samples are given in Table 1. It was seen from 

Table 1 that the chemical reactivity of the LaMnO3 sam-

ple, especially, ‘Mn-contents’ goes on increasing when it 

is calcined by showing the increased concentration of the 

‘Mn’. The increase in the ‘Mn’ contents with calcinations 

indicates that probably, several Mn3 + ions starts getting 

converted into Mn4 +. Moreover, the increase in concen-

tration of ‘Mn’ is seen to be compensated by the decrease 

in ‘La’ concentration. (Note that the other peak depicted 

in the EDXRF spectra originates from the sample hold-

er). However, it is necessary to see the oxygen concentra-

tion and the effect of calcinations on it. Significantly, the 

ONH analysis (Table 1) indicated a decrease in oxygen 

contents with calcinations. When the sample is heated at 

800 C the environmental moisture loses, hence oxygen 

is removed from the surface of the material. Further 

heat treatment (i.e., LMO-1000 sample) causes the over-

heating, so that the sample starts to decompose. The 

decomposition of the crystal occurs with some sort of 

increased oxygen species. This explains that with heat 

treatment the compound becomes off-stiochiometric with 

respect to ‘La’ and ‘O’ resulting in more ‘Mn’ contents 

(with possible change in the charge state from Mn3+ to 

Mn4+ for charge balance). 

 

 
 

Fig. 4 – Typical EDXRF spectra of LMO-UH 

 

 
 

Fig. 5 – (a) SEM micrographs of LMO UH (10 m  2000) 

inset shows magnified image (1 m  20000) (b) SEM micro-

graphs of LMO-800 (10 m  2000) inset shows magnified 

image (1 m  20000) (c) SEM micrographs of LMO-1000 

(10 m  2000) inset shows magnified image (1 m  20000) 

 

Morphological evaluation of the LaMnO3 perovskite 

oxide is shown in Fig. 5 [(a)-(c)] for LMO-UH, LMO-800 

and LMO-1000, respectively. Also shown in the inset of 

each respective figure is the higher resolution SEM im-

age. The large area image indicates a spongy porous 

microstructure of the samples. Importantly, these spon-

gy porous microstructures are agglomerated for LMO-

UH sample, which with calcination reduces and gets 

separated. At higher resolutions, it was seen that the 

spongy porous microstructures looks more or less like a 

well defined porous foam-like structure for all the sam-

ples. Moreover, it was seen that with calcinations, the 

microstructure becomes more and more compact. Signif-

icantly, LMO-1000 samples show proper crystallization 

of the sample in the SEM image. 

 

Table 1 – EDXRF and ONH analysis of LMO-UH, LMO-800 and LMO-1000 samples 
 

 

Magnetic properties of the LaMnO3 compound have been strongly correlated with the calcination tempera-

 EDXRF ONH Analysis 

Sample ID Lanthanum (%) Manganese (%) Oxygen (%) Nitrogen (%) Hydrogen (%) 

LMO UH 61.00 % 39.00 % 32.48 % 12.00 % 0.80 % 

LMO 800 60.90 % 39.10 % 24.38 % 0.50 % 0.15 % 

LMO 1000 60.00 % 40.00 % 25.00 % 9.35 % 0.30 % 
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ture. Hysteresis (M-H) curve obtained at 30 K and 

300 K for all the bulk LaMnO3 samples i.e., LMO-UH, 

LMO-800 and LMO-1000 sample are shown in Fig. 6 [(a)-

(c)], respectively. For sample LMO-UH, magnetization 

arises due to the impurities such as Mn3O4 present at the 

interstitial sites. The coercivity found at 30 K for this 

sample is around 710 Oe. Moreover, it is seen that the 

sample at larger applied fields shows a small increment 

in magnetization values. This may be again due to the 

presence of small impurity material, which opposes the 

spin alignment under the application of the external 

magnetic field. Saturation state as well as coercivity 

values were found to be changed when LaMnO3 sample 

was calcined at 800 C and 1000 C. For LMO-800 and 

LMO-1000 the coercivity found at 30 K was around 54 Oe 

and 15 Oe, respectively, which is as shown in Fig. 6 (d). It 

indicate that the material resist largely to the magnetiza-

tion when it is calcined at 800 C and 1000 C due to the 

increased crystalline size, tilts found in the MnO6 octa-

hedra and a more compactness of the microstructure [35]. 

Furthermore, the hysteresis loops obtained at room tem-

perature shows paramagnetic behaviour. 

 
 

Fig. 6 (a) M-H curves of LMO UH taken at 30 K and 300 K (b) 

M-H curves of LMO-800 taken at 30 K and 300 K (c) M-H 

curves of LMO-1000 taken at 30 K and 300 K (d). Plot depicting 

the coercivity for LMO UH, LMO-800 and LMO-1000 
 

The temperature dependent magnetization (M-T) ob-

tained at Zero Field Cooling (ZFC) and Field Cooling 

(FC) by applying 0.5 KOe for the LMO-UH, LMO-800 

and LMO-1000 samples are shown in Fig. 7 (a)-(c), re-

spectively. It showed the considerable change in LMO-

UH sample [Fig. 7 (a)] by dropping the magnetization 

with increase in temperature indicating a transition 

from ferromagnetic to the paramagnetic phase. Two 

transitions occurred around 100 K and 230 K with sharp 

decrease in magnetization for LMO-UH sample indicat-

ing the major role of the impurities in the sample [36]. In 

case of the LMO-800 [Fig. 7 (b)] and LMO-1000 [Fig. 7 

(c)] sample, the M-T curves showed a sharp decrease in 

the magnetization in FC curves. At about 87 K, 47 K and 

30 K, there is a peak in the ZFC curve of LMO-UH, 

LMO-800 and LMO-1000 samples, which corresponds to 

the blocking temperature Tb [37]. Moreover, it is seen in 

the ZFC curves of all the samples that there exhibits an 

increase in the magnetization as the temperature in-

creases. After showing a maximum, the magnetization 

sharply decreases, which may be attributed to the coex-

istence of antiferromagnetic and ferromagnetic phases 

[38]. It is interesting to compare all these samples ac-

cording to the evolution of magnetization due to the 

different response to the temperature. The main evolu-

tion attributes to the reduction in magnetization values, 

changes in the M-T curves with the calcinations of LMO 

sample, which attributes to consequent weakening in 

magnetic interaction [39]. This might be also in part due 

to an under-estimate of randomly distributed spins in 

LMO-800 and LMO-1000 sample. Since the spins are not 

well aligned after magnetizing the sample, suggests that 

there is a possibility of existence of superparamagnetism 

at low temperature in the sample. However, on the other 

hand spins on the Mn site are aligned properly in case of 

LMO-UH due to the application of the external magnetic 

field and also due to the presence of the impurities in the 

sample. This finding constitutes the direct evidence on 

how macroscopic properties can be controlled by calcin-

ing the LMO samples at different temperatures and 

hence manipulating the changes in the magnetic proper-

ties [40]. 
 

 
 

Fig. 7 – (a) M-T curve of LMO UH taken for zero field cooled 

(ZFC) and field cooled (FC) at 500 Oe (b) M-T curve of LMO-800 

taken for zero field cooled (ZFC) and field cooled (FC) at 500 Oe 

(c) M-T curve of LMO-1000 taken for zero field cooled (ZFC) and 

field cooled (FC) at 500 Oe. (Inset of all figure shows the dM / dT 

vs temperature curve) 

 

4. CONCLUSION 
 

In conclusion, the structural as well as physical 

properties of the LaMnO3 have been strongly influ-

enced by the temperature; since the crystallinity and 

the crystalline size is controlled by the calcination tem-

perature. The formation of superparamagnetic phase of 

orthorhombic LaMnO3 at 800 C is probably the result 

of weakly coupled spins. This indicates that the elec-

tron lattice interaction is sufficiently small La3 + cati-

ons, which manifest the global distortion in the perov-

skite structure that depends on the degree of tilting of 

MnO6 octahedron. The progressive degree of an aver-

age tilting of MnO6 octahedron controls the transition 

temperature of the LaMnO3. Moreover, the tempera-

ture effect on the LaMnO3 matrix probably increases 

the Mn oxidation state; therefore, it gives the unusual 

dependence of the magnetization with temperature. 
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