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It is proposed parabolic assignment of the radial distribution function peaks shape. It is shown that 

this assignment is more in line with the real structure of disordered atomic networks, in comparison with 

the Gauss distribution. At the same time its application more adequately describes also the partial struc-

tural factors in diffraction studies of the amorphous solids. The analysis shows that the description of co-

ordination spheres atomic networks of amorphous substances by parabolic distribution functions can sig-

nificantly improve the resolution of the radial distribution function method. 
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1. INTRODUCTION 
 

The necessity of a detailed understanding of the 

structure and properties of non-crystalline materials is 

due to the important role they play in the development 

of a relatively new class of materials, such as metallic 

glasses, amorphous semiconductors, disordered 

nanosystems. Therefore, their structural characteris-

tics have become a rapidly growing area of experi-

mental and theoretical research in the last decade [1]. 

The structure of disordered states of matter is char-

acterized by the presence of a certain atomic short-

range order and is traditionally described in terms of 

the coordination spheres (CS) [2]. They define the geo-

metric configuration of the location of the nearest 

neighbors in the space around a "central" atom. The 

most common characteristic of presentation of the 

structure of disordered materials is a radial distribu-

tion function of the atoms (RDF) W(r) [3]. Such infor-

mation is extracted mainly from either direct diffrac-

tion experiments or atomic networks obtained by dif-

ferent methods of mathematical modeling. 

By definition, RDF can be represented as the sum of 

the distributions of the atoms of individual CS defined 

by certain functions Wk(r) [4]:  
 

 ( ) ( )k
k

W r W r  , (1) 

 

In the ideal case, each CS in the atomic network is 

allocated so that all of its atoms are arranged at the 

same distance from the central atom. But this situation 

does not occur even in crystals. In the crystal lattice 

the atoms uniting into the coordination sphere are lo-

cated at very close distances from the central atom [5]. 

In amorphous atomic networks the deviations of the 

interatomic distances within coordination sphere are 

considerably larger [6]. Therefore, their presence is 

necessarily taken into account in the study of the short-

range order of real amorphous solids. 

Traditionally, in the structural analysis the above-

noted topological disorder of structure is described by a 

Gaussian distribution functions within each of the CS 

[7]. Thus, for the CS with the coordination radius rk 

and coordination number Zk this function is:  
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where 2
k  is the standard deviation (variance) of the 

interatomic distances distribution in CS under consid-

eration. 

From a physical point of view, the use of the math-

ematical expression Eq. 2 to define the RDF within a 

fixed CS is not entirely correct. This is due to the fact 

that the Gaussian distribution describes the physical 

parameters of the systems with perfect disordering. 

Therefore, the graph of the distribution has long "tails" 

both towards lower and higher than rk distances. 

The real amorphous materials have a more ordered 

atomic network. It is due to the fact that the geometric 

parameters of such networks in condensed systems are 

set by the strict quantum mechanical laws of the inter-

atomic interaction. As a result, these parameters are 

strictly defined within specified ranges. For example, 

for the first CS the interatomic distances correspond to 

the lengths of strong chemical bonds between atoms 

which are locked at the minimum of the potential ener-

gy of their interaction. This causes severe restrictions 

on the change in length of chemical bonds, and, respec-

tively, on the variation of the interatomic distances 

within the first CS. For the second coordination sphere 

the same limitations are set by fixing the certain range 

of angles between chemical bonds due to chemical in-

teraction of different atomic triplets in atomic network. 

Similarly, interaction between different numbers of 

atoms of the third, fourth and subsequent CS limits the 

range of variation of the interatomic distances in them 

also. In this study, we investigate the possibility of us-

ing a quadratic function to describe the topological dis-

order of atomic structure within each of the CS. 
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2. MODEL CALCULATION 
 

For the comparative analysis we shall calculate the 

limiting parameters of the first several CS of the 

atomic network of amorphous silicon films. Its second 

CS is formed by the second neighbors of the central 

atom. Chemical bonds between these three atoms form 

an angle θ (see Fig. 1). The minimum length of Si-Si 

chemical bond, according to the first peak parameters 

in experimental RDF [8] is r1min  0.215 nm, and the 

maximum is 0.245 nm. For the tetrahedral linking of 

silicon atoms together the average angle between the 

bonds may be taken as 109 °. Analysis indicates that 

for different atomic networks, this angle may vary 

widely, from 103 ° to 115 °, without causing any 

significant mechanical stress of an atomic network [9]. 

From these data we can find the smallest interatomic 

distance between second neighbors as r2min  r1min (2 –

2cos 103°)1/2  0.333 nm. Similar calculations give the 

maximum distance between the second neighbors of 

r2max  r1max (2 – 2cos 115°)1/2  0.416 nm. At the same 

time, in the Gaussian representation the second RDF 

peak is contributed by the atomic pairs with consi-

?erably wider range of r2 interatomic distances from 

0.32 nm to 0.45 nm. The value r2  0.32 nm can be 

obtained by decreasing the angle θ between bonds to 

97 °, that is unlikely for the tetrahedral bonding of 

atoms [9]. The value of r2  0.45 nm in real silicon 

networks is unattainable, even if the angle θ  180 °(for 

this angle r2  0.430 nm). 
 

 
 

Fig. 1 – The geometry of the second CS formation for amor-

phous silicon 
 

The variation limits for the values of distances 

between third neighbors of the central atom can also be 

easily identified. But it is necessary to take into acc?-

nt the possibility of changes in the spatial arrangement 

of four atoms (see Fig. 2) linked by three chemical 

bonds. These changes are caused by two types of 

rotations of the terminal fourth atom with respect to 

chemical bonds between first and second, and second 

and third atoms. The rotations of the first type do not 

alter the interatomic distances r2 and r3. Therefore it is 

sufficient to analyze the influence on the r3 of the 

second type rotation only. Such rotations will vary the 

r3 value from a certain minimum value to a certain 

maximum one. These limiting cases correspond to the 

geometric configuration shown in Fig. 2, in which all 

four atoms under consideration lie in one plane. Simple 

mathematical calculations for these configurations give 

r3min  0.244 nm and r3max  0.526 nm. 

The value of r3min  0.244 nm corresponds to the 

distance between the nearest neighbors. This means  

 
 

Fig. 2 – The geometry of the third CS formation for amor-

phous silicon 
 

that, in this configuration, the fourth atom spatially 

must be very close to the nearest neighbor 5 of atom 1 

(see Fig. 2). But this is forbidden by the laws of 

formation of covalent chemical bonds in the disordered 

atomic network of silicon [9], and is not confirmed by 

their experimental diffraction study [8]. Therefore, the 

atomic configurations with r3min in the structure of 

amorphous silicon are absent and do not contribute to 

the first CS. The same conclusion was made based on 

the results of mathematical modeling in [10]. 

The rotation of tetrahedrally arranged neighbors of 

atom 3 around the axis 2-3 from the position with r3min 

will gradually increase the r3 value. At a certain stage 

of this turn, the fourth atom will go away from the 

atom 5 for the distance in which formation of covalent 

chemical bond between the atoms may become 

energetically favorable. The result is formation of 5-

membered ring. The existence of the local atomic 

configurations in the disordered atomic network of 

silicon is confirmed both by computer simulations [10] 

and experimentally [9]. But for the five-membered ring 

interatomic distance r3 falls in magnitude into the 

second CS. Therefore, such geometric configurations 

will be manifested in the second CS in RDF. 

So, the third CS of amorphous silicon may partially 

overlap with the second CS and comprises a range of dis-

tances from 0.416 nm to 0.526 nm. But in the Gaussian 

representation the third peak of the experimental RDF 

covers a wider range from 0.39 nm to 0.56 nm that is not 

consistent with physical and chemical principles of the 

construction of a disordered network from silicon atoms. 

 

3. THEORY 
 

To account for the marked restrictions, we have 

tried in the diffraction analysis to describe the varia-

tions of interatomic distances in atomic networks of 

amorphous materials within each CS not by a Gaussi-

an distribution, but close to it mathematical function 

with a clear fixation of distribution "tails". Our analysis 

have shown that a simple quadratic function, with the 

domain of definition limited to a range of possible 

changes in the interatomic distances in each of the CS 

satisfies such conditions. So we have set RDF within a 

fixed CS in the simple form: 
 

  
2
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where Ak and Bk are the values determined by Zk and 

σk parameters of interatomic distances distribution in 

the relevant CS. In order to establish the correlation of 

Ak and Bk with Zk and σk parameters we use physical 

conditions which must be satisfied by function Eq. 3. 
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From the physical meaning of Wk(r) function it follows 

that when deviations of the interatomic distances from 

the CS radius rk exceed a certain amount δ, the 

function should take zero values. That is, 
 

 ( ) 0kW r  , if r ≤ rk – δ and r ≥ rk + δ. (4) 

 

At the same time the area under the graph of Wk(r) 

function within its definition domain should be equal to 

Zk. Thus, 
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In addition, to maintain maximum consistency 

between Gaussian and quadratic distributions we 

impose the additional condition of peak heights 

equality for these distributions. Then, with r  rk: 
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From the relations Eq. 3 and Eq. 6 it follows that 
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Using the condition of Eq. 4, we obtain:  
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The last expression gives a simple relation between 

the parameters of the quadratic distribution function: 

Akδ2  – Bk. We now apply the condition Eq. 5: 
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From the last equation taking into account the ratio 

Eq. 7 we obtain: 
 

 23
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Summarizing the performed mathematical calcula-

tions, we find that the quadratic function of the intera-

tomic distances distribution for the certain k-th CS in 

analytical form is given by 
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within the definition interval of (rk –

1,88σk)  r  (rk + 1,88σk). Beyond this interval 

Wk(r)  0. 

 

 

4. DISCUSSION 
 

To test the possibility of the use of quadratic func-

tions in the description of CS interatomic distances dis-

tribution we consider model RDF for amorphous silicon 

films, shown in Fig. 3. They were obtained from experi-

mental data taken from [8]. These model curves were 

constructed from the set of the peaks of different shape, 

each of which corresponds to a certain maximum in ex-

perimental RDF. The set of these peaks gives us some 

model RDF. In the case of Gaussian peaks we have got 

the first model RDF (see curve 1 in Fig. 3), which differs 

from the experimental one by 2-3 %. 
 

 
 

Fig. 3 – Model RDF graphs for the initial Gaussian (curve 1), 

adjusted Gaussian (curve 2) and quadratic (curve 3) distribu-

tions of CS interatomic distances for amorphous silicon films 
 

Further we have taken into account that the RDF 

in [8] was obtained at the upper limit of the integral 

Fourier transform s2 ≈ 150 nm – 1. Therefore, its peaks 

are much broader than the real distribution of the at-

oms in the CS of the atomic network. According to the 

results of [11], the transition in the Fourier transform 

from s2 ≈ 150 nm – 1 to s2 → ∞ the variances of the in-

teratomic distances distributions in the CS are reduced 

by ~ 30 %. Taking into account this regularity, we have 

adjusted the model RDF of amorphous silicon films to 

the form that fits best their atomic structure. To do 

this, we have reduced the variances by ~ 30 % in the 

parameters of the Gaussian CS (see curve 2 in Fig. 3). 

In the third step of the calculations of model RDF 

we have carried transformation of CS Gaussian peaks 

at the vertex of the parabolas (see curve 3 in Fig. 3). 

The parameters of the quadratic distributions within 

each of the CS were calculated from the corresponding 

parameters of Gaussian distributions adjusted by the 

above relationships. 

As it is seen from the Fig. 3, the two functions set 

almost identical distribution of peaks in the central 

region. At the same time, there are no "tails" specific to 

Gaussian distributions for very large and very small 

interatomic distances, as compared to the respective 

CS radii on the graphs of quadratic function. Therefore, 

we suppose that in structural analysis of amorphous 

solids the use of quadratic distribution of interatomic 

distances within individual CS is physically justified. 
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As for the Gaussian distribution the half width ΔГ is 

associated with the dispersion by the simple relation 

2  0.18Δ2
Г. Let’s find a similar relation for the intro-

duced quadratic distribution of interatomic distances. 

For this purpose, we substitute in the expression 

Eq. 11 the values of (r – rk)  ΔК/2 and we will take by 

definition that Wk(r)  0,5Bk. As a result we obtain a 

simple equation: 
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After the necessary transformations, we have find 

that for a quadratic distribution 2  0.15Δ2
K. The re-

sulting expression is very close to the above formula 

similar to a Gaussian distribution. They differ only by 

a numerical coefficient. Since quadratic distribution at 

half-height is a little bit wider than the Gaussian one 

(Δ2
K  Δ2

Г) (see Fig. 3), to obtain the same 2 value, the 

half-width of the peak of the quadratic distribution 

should be multiplied by a slightly smaller factor (0.15 

instead of 0.18). 

The results shown in Fig. 3 for different models of 

the interatomic distances distributions in CS show 

some differences in the overall total RDF relating peak 

width and depth of the valleys between them. In gen-

eral, these differences accurately describe the natural 

discrete character of short-range order in amorphous 

solids. It was interesting to clear up the nature of the 

effect of such differences in the distribution functions of 

interatomic distances Wk(r) on the interference func-

tions of the CS. For this, we have calculated the func-

tions for the first and second CS for amorphous silicon 

films by numerical methods for the two types of distri-

bution: the adjusted Gaussian and quadratic. Analysis 

of the results have shown (see Fig. 4) that when using 

the same parameters in these distributions calculated 

interference functions are virtually identical to each 

other for the first CS and have slight differences for the 

second CS. In general, the identified differences lie 

within the accuracy of the interference functions de-

termination in the diffraction experiments. 

 
 

Fig. 4 – The interference function for the first (curve 1, 2) and 

second (curve 3, 4) CS of amorphous silicon films, calculated 

for the Gaussian (curve 1, 3) and quadratic (curve 2, 4) 

distribution of interatomic distances 

 

5. CONCLUSION 
 

The Gaussian distribution that often used in phys-

ics describes the physical parameters of the systems 

with perfect disordering. The graph of this distribution 

has long "tails" both towards lower and higher than 

average parameter. The real amorphous materials 

have a more ordered atomic network. And we have 

tried in the diffraction analysis to describe the varia-

tions of interatomic distances in atomic networks of 

amorphous materials within each coordination spheres 

not by a Gaussian distribution, but close to it mathe-

matical function with a clear fixation of distribution 

"tails". It is shown that a simple quadratic function, 

with the domain of definition limited to a range of pos-

sible changes in the interatomic distances in each of 

the coordination spheres satisfies such conditions. The 

analysis shows that the description of coordination 

spheres atomic networks of amorphous substances by 

parabolic distribution functions can significantly im-

prove the resolution of the radial distribution function 

method and more adequately describes the partial 

structural factors in diffraction studies of the amor-

phous solids. 

 
 

Вплив типу розподілу міжатомних відстаней на функцію  

радіального розподілу аморфних речовин  
 

Г.М. Іваницька1, В.С. Ковтуненко2, М.М. Рябощук1 
 

1 Ужгородський національний університет, пл. Народна, 3, 88000 Ужгород, Україна 
2 Черкаський державний технологічний університет, бул. Шевченка, 460, 18006 Черкаси, Україна 

 
Запропоновано параболічне представлення форми піків функції радіального розподілу атомів. 

Показано, що таке наближення більш відповідає реальній структурі невпорядкованих атомних сіток, 

у порівняні з розподілом Гауса. Одночасно, його використання більш адекватно описує парціальні 

структурні фактори в дифракційних дослідженнях аморфних речовин. Аналіз показує, що опис коор-

динаційних сфер атомної сітки аморфних матеріалів параболічним розподілом може суттєво покра-

щити розділення піків функції радіального розподілу атомів. 
 

Ключові слова: Невпорядковані матеріали, Атомний ближній порядок, Функція радіального розподілу. 
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Влияние типа распределения межатомных расстояний на функцию радиального  

распределения аморфных веществ  

 

Г.М. Иваницкая1, В.С. Ковтуненко2, М.М. Рябощук1 
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2 Черкасский государственный технологический университет, бул. Шевченко, 460, 18006 Черкассы, Украина 

 
Предложено параболическое представление пиков функций радиального распределения атомов. 

Показано, что такое приближение больше соответствует реальной структуре неупорядоченных атом-

ных сеток, в сравнении с распределением Гаусса. Одновременно его использование более адекватно 

описывает парциальные структурные факторы в дифракционных исследованиях аморфных веществ. 

Анализ показывает, что описание координационных сфер атомной сетки аморфных материалов пара-

болическим распределением может существенно улучшать разделение пиков функций радиального 

распределение атомов. 
 

Ключевые слова: Неупорядоченные материалы, Атомный ближний порядок, Функция радиального 

распределения. 
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