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The synthesis of decagonal Penrose tiling by a pair of decagons – starlike and dorsal is considered in 

this paper. The synthesis procedure is realized according to morphogenetic growth model. It is shown that 

procedure which controls the synthesis process is just chaotic, but not stochastic. The fractal properties of 

Penrose tiling synthesis procedure are studied. It is revealed that all characteristics via the morphogenetic 

fronts have oscillatory-wave behavior. 
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1. INTRODUCTION 
 

In the basis of Penrose tiling synthesis the three al-

phabet levels, which form the hierarchical system, lay 

(Fig. 1). The first level is formed by two “golden” Robin-

son triangles, this level is the basic or symbol one. The 

second level is formed by two “golden” rhombuses; this 

level is syllable one. The third alphabet level is formed 

by two types of decagons, starlike (S-) and dorsal (D-). 

This, third alphabet level {S, D} is naturally considered 

as phraseological, since each decagon is aggregated by 

10 syllables, or rhombuses. Thereby we have three lev-

els of dual alphabets which form the complete system. 

The paving procedure of R2 plane by a pair of golden 

rhombuses is a part of nonrecursive mathematics as 

R. Penrose notice [1, 2]. For example papers [3, 4] contain 

a quite extensive research for problems of central cart-

wheel defect and dead surfaces in the paving procedure. 

These problems may be avoided, and synthesis procedure 

may be easier if to work with decagons which correspond 

to the third alphabet level. Here certain nontrivial rules 

for the decagons conjunction present, which permit some 

overlappings or defects (Fig. 2). 
 

 
 

Fig. 1 – Three levels of Penrose tiling synthesis 
 

 
 

Fig. 2 – The conjunction rules for starlike (S-) and dorsal (D-) 

decagons. (a-c) The types of mutual conjunctions 

2. FORMALISM 
 

For morphogenetic fronts analysis we employ the 

theory of enumeration [5]. Any enumerating polynomi-

al (EP) has the standard form: 
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where ( )
ik

T y  – the coefficients of EP, defining the 

bushes number with ki – the branching coefficient; 
ik

y – 

the bushes designation. 

It is seen that each EP has two freedom degrees, 

one of them describes the tangential “phrase” length, 

and the second describes the number of “phrases” with 

specified length, which are contained in the current 

motive. 

The probabilistic EP (PEP) might be turned from 

absolute form by an ordinary normalization on the each 

motive of hierarchy: 
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where 4
1( ) ( ) ( )

i i i ik k k kt y T y T y   – the normalized 

coefficients for 
ik

y . 

Due to normalization procedure this expression re-

ceives a new significance: now it might be considered as 

a probability distribution or the statistics of “phrases” 

by the length. This statistic gives an opportunity to 

find an average length on each level, and further the 

entropy of length: 
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According to information-dynamical method [6-11], 

one may calculate the fractal dimension estimate. 

Firstly the entropy dependence in the Radon function 

form –   
 

H S k  should be calculated. The Radon func-

tion in turn allows existence of the derivative in terms 

of Radon-Nicodym [12], which linearized form in our 
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opinion, is fractal dimension value: 
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Last expression gives useful information-theoretical 

interpretation for the fractal dimension. In the denom-

inator, the entropy for average length  iS k  stands, 

which in turn corresponds to the diversity portion, car-

ried out by the second alphabet symbol, on average. 

Therefore, the numerator   i kH t y  corresponds to the 

diversity portion which depends on the “phrase” repeti-

tion factor. These entropies ratio that is an entropic 

diversity density. 

 

3. RESULTS AND DISCUSSION 
 

We consider that decagonal Penrose tiling synthesis 

procedure is realized with respect to the morphogenetic 

growth model. Our interpretation of morphogenesis is 

quite close to the terms of monograph [13]. In the basis 

of morphogenesis always lays certain seed gene, in our 

case S-decagon. The reduplication mechanism itself is 

appeared to be as systems of a wavy fronts, which are 

consist of {S, D} alphabet symbols in the special succes-

sion and order (Fig. 3). 
 

 
 

Fig. 3 – The result of decagonal Penrose tiling synthesis pro-

cedure with highlighted morphogenetic fronts and angular 

sectors 
 

It is clearly seen that in the result of decagonal cov-

ering we at the same time indirectly have solved the 

synthesis task on the rhombuses level. The total num-

ber of decagons for 20 morphogenetic fronts yields 

1245. The decagons probabilities in such a sample are 

p(S)  0.309…, p(D)  0.691… 

Figure 4 shows the dependence of S- and D-

decagons numbers ratio via hierarchy levels, and also 

the ratio [n(D) – n(S)] / [n(D) + n(S)]. The visual analy-

sis points to the quasistochastic periodicity. Here we 

also have analyzed the flow of nulls for these trends 

and got the estimates for zero-repetition intervals 

 0 ( ) ( ) 1.42 45%T n D n S   , 

 0 ( ) ( ) ( ) ( ) 1.39 36%T n D n S n D n S          . Making an 

integration for these values, we obtain a twice average 

estimate for the zero-repetition interval 

00 1.41 40%T   . 

Figure 4a, b shows the significant variability, which 

in our opinion is conditioned by a high level of chaotici-

ty [14, 15], which originated from the geometry of the 

decagon conjunctions. There is some justification, for 

last assertion. If we worked with primary alphabet in a 

random manner, according to its probabilistic struc-

ture, we would come to non-zero probability 

p(SS) ~ 9 %. But this is prohibited by synthesis logic of 

decagonal tiling (Fig. 2). This means that the procedure 

of stochastic synthesis of tiling prohibited principally. 

On the other hand, we have a significant variability of 

zero-repetition interval estimates. Then there is only 

way to recognize that procedure which controls the 

synthesis process is just chaotic [10, 11]. 
 

 
 

Fig. 4 – The dependences of S- and D-decagons numbers ratio (a), 

and swing [n(D) – n(S)] / [n(D) + n(S)] (b) via hierarchy levels 
 

From the traditional crystallography point of view, the 

behavior of Fig. 4a, b dependencies allow describe the 

process of radial morphogenesis via fractional translations 

with substantially fluctuate irrational period. It is re-

markable that in the strictly deterministic morphogenesis 

procedure the stochastic is absolutely absent. 

From Figure 3 substantially different role of S- 

and D-decagons in tangential “phrases” is seen. Each 

“phrase” always starts with an S-decagon, which 

means the unnecessary of separation signs. All the 

“phrases” can be described by the {SDi≤4} expression. 

The self-similar character of “phrases” allows em-

ploying the theory of enumeration [5]. The normalized 

EP might be turned from absolute form by an ordinary 

normalization on the each motive of hierarchy. Due to 

normalization procedure the PEP receives a new signif-

icance: now it might be considered as a probability dis-

tribution or the statistics. This statistic gives an oppor-

tunity to find an average “phrase” length on each mor-

phogenetic front, and further the entropy of length. 

Now one may consider the second freedom degree 

of enumerating polynomials in the normalized (or 

probabilistic) form – the probabilistic coefficients, and 

introduce the entropy function for them. Figure 5 once 

again demonstrates the oscillation-wave feature pres-

ence. Probably this feature will be the universal for 

whole quasicrystalline symmetries. The averaged en-

tropy value for the stationary stage yields ~0.80. 
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Fig. 5 – The entropy values for coefficients of probabilistic 

enumerating polynomials via morphogenetic fronts 
 

Further, according to information-dynamical meth-

od [6-11], one may calculate the fractal dimension es-

timate for the decagonal Penrose tiling synthesis pro-

cedure. 

Firstly the entropy dependence in the Radon func-

tion form – ( )H S k 
   should be calculated. The Radon 

function in turn allows existence of the derivative in 

terms of Radon-Nicodym [12], which linearized form in 

our opinion, is fractal dimension value (Fig. 6). 
 

 
 

Fig. 6 – The fractal dimension values via morphogenetic 

fronts 
 

The dependency on the Figure 6 has essentially os-

cillation-wavy character and the first average value 

yields  1
ˆ 1.395...frd P  . If it is required to make an 

elimination of the global spike on the third level, then 

the average value will be  2
ˆ 1.275...frd P   And the 

general average value for two these values will be 

 ˆ 1.33...frd P   

One interesting conclusion here is that the morpho-

genetic front is not linear at all. In spite of its mono-

linear Turing construction it possesses the fractal di-

mension. Thereby even the tangential component of 

Penrose tiling is “ultralinear”. 

For the further consideration of fractality feature 

we suggest make a research of the properties of chaotic 

attractor if such exists in the synthesis procedure. Ac-

cording to the dynamical chaos conception [14 – 16], it 

is necessary to construct the corresponding phase space 

and to carry out a typical analysis of phase trajectory 

for the purpose of attractor type identification.  

Usually the phase space is based on the generalized 

coordinate-impulse axes with subject to freedom degree 

number. In our opinion here the Radon’s function 

methodology [12] must be employed with the purpose of 

forming of entropy functionals from these freedom de-

grees. Just these entropies we declare to be generalized  
 

 
 

Fig. 7 – Phase trajectory of Penrose tiling synthesis in the axes 

    ;i k iH t y S k 
 

 which the Radon methodology suggests 

 

coordinates in the Radon’s terms. Figure 7 shows such a 

phase trajectory. 

Fig. 7 also shows that attractive set has two cen-

ters. The upper right center corresponds to the nonsta-

tionary mode in the initial morphogenesis stage. Fur-

ther, morphogenetic growth was gone, the lower left 

cluster appeared. It is a compact set as any attractor is 

supposed to be. 

The same     i k iH t y S k  ratio is typical for both 

sets and points to some information-theoretical invari-

ant, which is no other than fractal dimension in the 

methodology of entropic [17] diversity density of proba-

bilistic enumerating polynomials. 

This attractive set possesses the specific subtle 

structure consisted of three sub-clusters (Figure 7). It 

is notable that “horizontal” clusters possess the dorsal 

symmetry axis, which passes over point ln 2. The whole 

cluster along the   i kH t y -axis lays in the range 

0.51.05, and along  iS k -axis in the range 0.336 

(Kmin  1.4)  0.916 (Kmod  2.5); Kmax  2.745. The re-

markable fact is a barycenter presence in the point 

with location (ln 2; 0.8). 

The barycenter concept is quite unobvious, and not 

all attractors possess it. The identification of attractor 

type means the determination of phase trajectory be-

havior character in the barycenter neighborhood. To 

this effect we have calculated the distances between 

points of phase trajectory and the barycenter in the 

Euclidean topology (Fig. 8). 
 

 
 

Fig. 8 – The graph of distances between phase Radon’s 

trajectory points and attractor’s barycenter in the Euclidean 

topology 
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Figure 8 clearly shows three behavioral stages of  

current dependency. The first stage is a “2-6” levels 

ascending region, corresponding to the moving phase 

trajectory away from the barycenter. This diverging 

branch has an average logarithmic tendency. 

The second stage which corresponds to levels “7-8” 

reveals the sharp spontaneous fluctuating decreasing 

of current dependency, which means the high fluctua-

tive attraction to the barycenter on these fronts of mor-

phogenesis process. Just this stage and this effect we 

call the “phase transition”. Let us explain what con-

cepts underlie this effect. One may turn back to Figure 

3 and thoroughly analyze it. This pattern reveals that 

earlier morphogenetic fronts “1-5” possess pentagonal 

symmetry and further peripherad the symmetry type 

sharply changing to the decagonal symmetry. One may 

easily determine the transition rules: 

a) Each pentagon vertex is translated into the new 

edge of decagon; 

b) Each pentagon edge induces new parallel edge of 

decagon. 

These factors allow make a conclusion that we have 

phase transition with spontaneous symmetry breaking 

5  10. It is a purely Landau symmetry-type phase 

transition. 

The third stage “9-19  ” corresponds to the oscil-

lation-wave behavior of Radon trajectory in the phase 

space. All these levels correspond to the stable dense 

cluster with focus attractor. But from the other side the 

oscillations of “9-19” levels have not damping tendency, 

and consequently it is the cyclic attractor. 

Then this oscillation-wave behavior is equivalent to 

the astable, autowave process to which the intense oscilla-

tions of earlier stages are tended by focus scenario. Actu-

ally the autoregime, rhythm is established. So just such a 

regime characterizes this morphogenesis process. 

In the ordinary coordination space, morphogenetic 

fronts are growing (reduplicating) from seed gene to infin-

ity. From the attractors theory point of view, the growing 

process from the centre to the periphery is gone since the 

infinite horizon is just an attractor, to which all the mor-

phogenetic fronts are tending. If to consider this process 

from the statistical thermodynamics point of view, than in 

spite of quasiwave morphogenesis character it has some 

specific features of thermal relaxation processes as it 

would be unexpected. 

It must be once again noticed that before phase 

transition system is undergone catastrophical fluctua-

tions (on the “7-8” levels) and just only after that the 

compact stable cluster is forming. Also this phase tran-

sition is characterized by invariant (in general), which 

is no other than a fractal dimension property. 

Throughout the whole article are repeatedly faced 

with essential quasiperiodicity of morphogenesis pro-

cess. Also, we have discussed that the oscillation-wave 

behaviour of different characteristics of the Penrose 

tiling is its inherent feature. 

Such an originality of this approach of fractality 

and attractor features research of morphogenesis is 

conditioned just by the choice of phase space in the 

Radon’s coordinates. It is no need to calculate the Poin-

care cross-sections [15] or to research the Lyapunov 

exponents spectrum [15]. 

This approach for analyzing of complex hierarchical 

multidimensional systems is based on the interpreta-

tion of fractality feature just as it prescribes the Radon-

Nicodym derivative. This derivative is a ratio of 

“phrases” repetition coefficient’s entropy to the 

“phrases” length coefficient’s entropy in the polynomial 

representation of complex hierarchical systems, such as 

a Penrose tiling. 

 

4. CONCLUSION 
 

We have made a synthesis of a decagonal Penrose 

tiling (by the third alphabet level), which has been re-

vealed as having a fractal properties with value of frac-

tal dimension ~ 1,3. In our opinion this inherent frac-

tality feature is the necessary condition for the decago-

nal Penrose tiling synthesis procedure itself. 

The remarkable point is that fractal dimension by 

Fig. 6 is correlated with fractal dimension of chaotic 

attractor (Fig. 6), describing the morphogenesis proce-

dure in phase space with     ;i k iH t y S k 
 

 axes. 

Thereby in spite of visual linearity of morphogenetic 

fronts, in truth it is “ultralinear”. The subtle structure 

of chaotic attractor consisted of three stages confirms 

this fact. 

The first stage (fronts “1-6”) is a nonstationary part 

of morphogenesis process, with fivefold fronts sym-

metry. The second stage (fronts “7-8”) is characterized 

by high fluctuations, which means Landau phase tran-

sition with symmetry breaking from pentagonal to de-

cagonal 5  10. The third stage (“9-19  ” levels) is 

an established one. 

The cyclic focus attractor on the phase space which 

corresponds to the autowave mode is appeared. There-

by the dynamics of morphogenetic evolution in the 

phase space contains the thermodynamic, fluctuating, 

and autowave modes. Eo ipso the decagonal Penrose 

tiling synthesis procedure is an chaotic and fractal one.  
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