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Computed tomography (CT) is a widespread method used to study the internal structure of objects. The 

method has applications in medicine, industry and other fields of human activity. In particular, Electronic 

Imaging, as a species CT, can be used to restore the structure of nanosized objects. Accurate and rapid re-

sults are in high demand in modern science. However, there are computational limitations that bound the 

possible usefulness of CT. On the other hand, the introduction of high-performance calculations using 

Graphics Processing Units (GPUs) provides improving quality and performance of computed tomography 

investigations. Moreover, parallel computing with GPUs gives significantly higher computation speeds 

when compared with (Central Processing Units) CPUs, because of architectural advantages of the former. 

In this paper a computed tomography method of recovering the image using parallel computations powered 

by NVIDIA CUDA technology is considered. The implementation of this approach significantly reduces the 

required time for solving the CT problem. 
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1. INTRODUCTION 
 

The main limitations on the development of numer-

ical methods for solving complex problems are the huge 

amount of time required for calculations and the inac-

cessibility and high cost of powerful computing cluster 

systems. 

Despite the work of leading research organizations 

in the development of computing systems to improve 

the cost / benefit ratio of CT investigations, the demand 

for higher performance remains. In this case, an inno-

vative comprehensive development environment, 

CUDA, created by NVIDIA provides a way forward [1]. 

The main new feature of CUDA is the option to send C, 

C++ and Fortran code directly to the Graphics Pro-

cessing Units (GPUs), with no assembly language re-

quired. Furthermore, this technology is available to 

anybody with graphics processing units compatible 

with CUDA.  

A classic example of an unrealized task was the pro-

ject of TechniScan Medical Systems [2]. The goal of the 

company was to recover a 3D image of the mammary 

glands of patients to diagnose diseases. The raw data for 

the image was obtained using ultrasonography. Howev-

er, the use of CT methodology was not possible due to 

the high requirements on system resources, until NVID-

IA released high performance GPUs, with CUDA. 

The introduction of computed tomography (CT) has 

allowed researchers to reconstruct 2D and 3D represen-

tations of the objects of analysis by stratified non-

destructive influence. This method is widespread in med-

icine, microscopy, petrophysics and geophysics. But the 

computational complexity of CT is still extremely high. 

In CT the level of detail of an object depends on the 

step size of the grid chosen for scanning and calculat-

ing. For two-dimensional images the computational 

complexity of the algorithm is equal to O(n3), where n is 

the dimension of the grid chosen. In medicine and mi-

croscopy the level of detail of a research object is crucial 

if it is to be used to make informed decisions. Thus, to 

obtain the two-dimensional internal structure of an 

object with a diameter equal to 1 meter and with 10 – 3 

mm step size the order of the number of calculations is 

1018, which is unacceptable for modern CPUs (Central 

Processing Units), even taking into account multi-core 

systems. Note, that filtering noise caused by the scat-

tering by various algorithm (See, for example, [3-5]) 

requires additional computational cost.  

The implementation of computed tomography data 

processing on GPUs using NVIDIA CUDA provides a 

significant improvement to performance because of 

features of the algorithm. Another example of the suc-

cessful introduction of computing with CUDA is 

the Procter & Gamble Company. Its research center 

modeled the efficiency of surface-active agents (surfac-

tants). The researchers, by using two NVIDIA Tesla 

GPUs, archieved performance equal to the supercom-

puter Cray XT3 with 128 processors, as well as the 

IBM BlueGene / L with 1024 processors [6]. In terms of 

economic advantages, it is important to understand 

that the energy consumption is proportional to the 

fourth power of the frequency of a processor [7]. Hence, 

if the clock frequency increases twofold, the electric 

energy consumption will raise 16 fold, as well as the 

heat released. 

In recent years, the growth rate of the CPU fre-

quency has dropped significantly. Therefore, there has 

been a new trend to increase the number of cores. In 

terms of the number of cores, it is clear that GPU’s are 

far superior to CPU’s, for example AMD Opteron 6386S 

with 16 cores and 2.8 GHz is inferior to NVIDIA Ge-

Force GTX690 with 3072 CUDA cores and total fre-

quency equal to 915 MHz. AMD and Intel recognize 

that the race to increase the number of cores will end 

soon, preferring heterogeneous systems, combining the 

Central and Graphics Processing Unit on one chip.   

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
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2. COMPUTATIONAL ALGORITHM FOR IMAGE 

RECOVERY OF COMPUTED TOPOGRAPHY 

PROBLEMS 
 

Let us consider in more detail the reconstruction al-

gorithm of an object of research. The mathematical 

basis of the method was proposed by I. Radon in 1917 

[8], which was based on the idea of recovering multivar-

iate functions by its integral characteristics. However, 

the world's first X-ray tomography was demonstrated 

by G. Hounsfield [9] in 1972, since by that time there 

were X-ray machines performing a large number of 

high quality images, as well as a computer that could 

handle these images. 

According to Radon’s methods, the structure of the 

object can be reconstructed from a series of parallel 

cross-sections with penetrating radiation. Suppose that 

we need to determine the density distribution of matter 

1 2( , )f x x  in the cross section of the object. The object is 

irradiated by a beams in the various directions. The 

reduction of the rays is proportional to the density of 

the matter. The residual intensity of the rays passing 

through the object along the straight line is fixed on the 

opposite side of the emitter. Suppose that as a result of 

irradiating at various angles, a set of integral projec-

tions of the function f was obtained. The task of recon-

structing the internal structure of the object is simpli-

fied to the inversion of the Radon transform. 

To restore the two-dimensional structure of the object 

under study from data of irradiation, we will use the 

parallel scheme of scanning. In this case, irradiation 

occurs at different angles of inclination of the studied 

object. For a fixed angle, radiation sources and detectors 

are located at the parallel lines (see Fig.1). For single 

angle, the number of radiographic lines is equal to 

2q + 1. The number of radiographic angles is equal to p. 
 

 
 

Fig. 1 – Parallel scanning scheme 
 

As a result of scanning, a two dimensional array of 

data ,j kg  is obtained, where 1,...,j p  is an index indi-

cated the number of angle of irradiation, and 

  ,...,k q q  is an index of radiographic line.  

To solve the problem of computed tomography, we 

apply the algorithm of convolution and back projection, 

which consists of two steps. 

 

Step 1. Calculating the convolution. 

For all indices j  1,…, p , and k  – q,…, q to calcu-

late the value of the convolution  
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Here, h is a distance between two parallel  radiographic 

lines, wb is a filter, b is a given spectral width [5]. For 

example, b is equal to  / h in the case, if this value is 

less than the number of angles of irradiations, and 
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Step 2. Calculating the back projection. 

For each point of reconstruction  we calculate discrete 

back projection 
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Some aspects of the implementation of the algo-

rithm on GPUs are presented in the next section. 

 

3. USING GRAPHICS PROCESSING UNITS FOR 

PARALLEL IMPLEMENTATION OF THE RE-

CONSTRUCTION ALGORITHM  
 

According to steps 1-2 of the reconstruction algo-

rithm, the solving the CT problem reduces to a serial 

computation of matrixes ,j kv  and the function ( )f x  on 

a given grid with dimension N N . An important 

computational feature of the method is the independ-

ence of computing ,j kv for each index. Similarly, this 

property holds for computing matrix ,m nf , which is a 

discrete representation of ( )f x  on a given grid. Thus, 

the calculation of each element of the matrix ,j kv  and 

the function ( )f x  can be done independently. From the 

point of view of effective use of the CUDA technology, 

those arrays are distributed into groups. One of the 

simplest ways is a partition by the rows or columns. 

Hence, each row or column of the matrixes ,j kv  and 

,m nf  is calculated by blocks. Grouped items are trans-

ferred for execution in the streaming multiprocessor 

CUDA (SM) GPU. The presence of many SMs allows 

processing blocks in parallel. Furthermore, each multi-

processor includes extra scalar processors (SPs), provid-

ing additional parallelization. A feature of NVIDIA 

CUDA is the formation of blocks of tasks in the form of 

pools, called warp. The size of warp for modern GPUs 

that support CUDA is 32 threads. Tasks within a pool 

(warp) are executed in SIMD (Single Instruction Multi-

ple Data) style, i.e. each thread inside the warp be able 

to carry out only one instruction. Thus, providing for 

each element of the matrixes ,j kv  and ,m nf  a sequence of 

instructions required to obtain the values, CUDA ena-
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bles the same operation for the group of the elements 

independently and in parallel, thereby improving per-

formance. The number of available multiprocessors and 

scalar processors on the GPU plays a key role in estimat-

ing the improved performance. An additional constraint 

is the amount of available memory, but additional frag-

mentation processes can eliminate this concern. 

Let us consider implementation of both steps of re-

construction algorithm on GPUs for Cormack’s phan-

tom [10]. To test the program code the graphics nVidia 

GeForce GTX 660M (CUDA Capability 3.0) is used.  

Implementing the first step. 

Below are the results of testing the function that 

implements the first step of the algorithm for different 

block sizes (blockDim.x) and different number of blocks 

(gridDim.x) (see Table 1). Here, timeout is an error that 

occurred when it has exceeded the maximum computa-

tion time, default value is 10 seconds; blocksize is an 

error generated in excess of the allowable number of 

threads per block. 
 

Table 1 – Runtime of the first step of the algorithm depending 

on the size and number of blocks 
 

Test number blockDim.x gridDim.x Runtime 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1 

2 

4 

8 

16 

32 

64 

128 

256 

512 

1024 

2048 

1024 

1024 

512 

256 

128 

64 

32 

16 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

2 

4 

4 

8 

16 

32 

64 

128 

timeout 

8.12078 

4.26376 

2.33119 

1.30424 

0.749946 

0.441025 

0.257105 

0.180325 

0.108049 

0.054956 

blocksize 

0.0275024 

0.0275249 

0.0275238 

0.0275835 

0.0275793 

0.0275684 

0.0540881 

0.100913 

 

To optimize the program code, we introduced tem-

porary variables to store some intermediate results of 

calculations that reduce runtime in 4,226 times. In ad-

dition, to reduce the computation inside the function, 

all possible computations that do not depend on the 

indices were calculated on the host processor and 

placed in constant memory. 

If amount of radiographic lines for single angle, 

2 1q  is less than the maximum number of threads 

per block, it is possible to compute the convolutions for 

each angle in a separate block. For this we perform the 

following optimization actions: 

Radiographic data for single angle of irradiation 

must be multiples of 128 bits (see Fig. 2) 

Taking into account that size of the warp is 32, de-

termine the block size as 32s, where 

   32( 1) 2 1 32 .s q s  

Before computing the convolution for a single angle  
 

 
 

Fig. 2 – Scheme of storing data 
 

of irradiation, radiographic data are copied from global 

memory to shared memory. 

Implementing the second step.   

Computing the back projection is parallelized simi-

larly to the first step, except that the use of shared 

memory is impossible, since the reconstruction of a sin-

gle pixel of image requires radiographic data of all an-

gles of irradiations.  

Note, there is ability to recover the three-

dimensional structure of the object based on the two-

dimensional reconstructions obtained for a set of cross 

sections using the considered algorithm. 

Here, in sequential computations, time spent on re-

construction in a single cross-section decreases with 

increasing of the cross section No. (see Table 2). 
 

Table 2 – Runtime of imaging of single cross section 
 

No.cross 

section 
Runtime 

No.cross  

section 
Runtime 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

0.0685953  

0.0661115  

0.0545759   

0.0370371 

0.0359608 

0.0317436 

0.0291794 

0.0292195 

0.0290545 

0.0287304 

0.0286961 

0.028704 

0.0278976 

0.0277789 

0.0277146 

0.0276469 

0.0274842 

0.0268462 

0.027262 

0.0266465 

0.0261585 

0.0262316 

0.0262062 

0.0256861 

0.0253958 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

0.0254455 

0.0254391 

0.0250839 

0.024842 

0.0253934 

0.0248262 

0.0242855 

0.0241654 

0.0240534 

0.0241818 

0.0238183 

0.0234513 

0.023478 

0.0236015 

0.0233004 

0.0230786 

0.0231629 

0.0230548 

0.0232344 

0.022733 

0.0226073 

0.0226477 

0.0225259 

0.0224326 

0.0220398 
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4. CONCLUSIONS 
 

Thus, the development of computing technology on 

graphics processors can significantly reduce the compu-

tational time required for image reconstruction of CT or 

Electronic Imaging problems. In addition, the described 

approach can effectively restore the image on a grid of a 

higher dimension, thereby improving the accuracy and 

quality of research in applied sciences. However, the 

development of algorithms to efficiently use shared and 

global memory requires more attention. 
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