Дослідження топографії та атомної структури поверхонь сколювання (100) шаруватих кристалів In₄Se₃

П.В. Галій*, Т.М. Ненчук, І.Р. Яровець

Львівський національний університет імені Івана Франка, вул. Драгоманова, 50, 79005 Львів, Україна

(Одержано 19.05.2014, у відредагованій формі – 04.06.2014, опубліковано online 20.06.2014)

Методами скануючих тунельної, атомно-силової мікроскопій (СТМ, АСМ) та дифракції повільних електронів (ДПЕ) на відбивання досліджено топографію, кристалографію та атомну структуру поверхонь сколювання (ПС) (100) шаруватих кристалів (ШК) Іп₄Se₃, одержаних шляхом сколювання *in situ*. Одержані результати вказують на існування періодичної, гофрованої структури на ПС. Показано, що ПС (100) Іп₄Se₃ є структурно стабільними і не зазнають атомної реконструкції у широкому температурному діапазоні 77-295 К. Встановлена анізотропія теплового розширення ПС за основними кристалографічними напрямками у площині сколу (100) Іп₄Se₃. Проведені розрахунки значень сталих двовимірної гратки, що знаходяться у площині ПС (100) орторомбічних ШК Іп₄Se₃ за результатами ДПЕ (*b* = 11,475 Å та *c* = 3,734 Å) задовільно співпадають з результатами отриманими методами АСМ та СТМ (*b* = 13-14 Å та *c* = 4 Å) та знаходяться у межах похибки вказаних методик, співпадаючи із значеннями одержаними методом Х-дифрактометрії (*b* = 12,308(1) Å та *c* = 4,0810(5) Å). Крім того, одержані результати дослідження структури ПС, вказують на коректність використання фільтрування зображень топограм, отриманих методом СТМ та адекватність використаної моделі для розрахунку сталих поверхневої гратки ПС (100) Іп₄Se₃ за результатами ДПЕ.

Ключові слова: Шаруваті кристали, Міжшарові поверхні сколювання, Топографія, Атомна структура, Скануюча тунельна мікроскопія, Атомно-силова мікроскопія, Дифракція повільних електронів.

 $\begin{array}{c} {\rm PACS\ numbers:\ 61.46._w,\ 68.37.Ef,\ 68.37.Ps,}\\ {\rm \ 68.47.Fg,\ 61.05.Jh} \end{array}$

1. ВСТУП

Існування наноструктурованих природних кристалічних матеріалів до яких належать шаруватоланцюжкові кристали халькогенідів індію [1] значно спрощує завдання одержання поверхневих наноструктур.

Одними з таких є шаруваті напівпровідникові кристалічні структури із слабким Ван-дер-Ваальсівським зв'язком між шарами і сильною ковалентноіонною взаємодією у шарі – шаруваті кристали (ШК) In₄Se₃. Це дозволяє легко отримувати *in situ* міжшарові поверхні сколювання ПС (100) In₄Se₃, шляхом сколювання у надвисокому вакуумі (HBB), з присутніми на них низькорозмірними (2D) природними наноструктурами. Крім того ПС ШК InSe, In₄Se₃, In₄Te₃ та інші є зручними модельними об'єктами для дослідження систем з пониженою розмірністю, що інтенсивно проводяться останнім часом з метою кращого розуміння властивостей природних 2D утворень і їх можливого технологічного застосування [1].

В даній роботі наведені результати досліджень методами скануючої тунельної мікроскопії (СТМ), атомно-силової мікроскопії (АСМ), дифракції повільних електронів (ДПЕ) на відбивання ПС (100) ШК Іп₄Se₃. Подібні дослідження ПС (100) Іп₄Se₃ є важливими, оскільки останні можуть бути використані як анізотропні, слабко провідні матриці / шаблони / підкладки для створення поверхневих провідних металевих (Іп/Ац) нанодротів, наношнурів та квантових наноточок та інших низькорозмірних структур [2]. Використовуючи поверхнево чутливі методи – АСМ, СТМ, ДПЕ можна дізнатися про двовимірні структури та їх параметри на ПС, можливу реконструкцію як їх самих так і сформованих на них наноструктур методами нанотехнологій.

2. МЕТОДИКИ ЕКСПЕРИМЕНТІВ

Топографія ПС (100) In₄Se₃, одержаних *in situ*, досліджувалась методами СТМ, АСМ, а атомна структура і кристалографія ПС – ДПЕ на відбивання.

Досліджувались монокристалічні зразки In₄Se₃, вирощені методом Чохральського у відновлювальній водневій атмосфері з розплав-розчину синтезованого сплаву In₄Se₃ + 10 ат. % In, що містить надстехіометричний (≤ 10 ат.%) In, який виступає як розчинник.

Для отримання ПС (100) In_4Se_3 зразки спеціальної форми розміром $3 \times 6 \times 4$ мм³ сколювалися *in situ* при 295 К ножем ультрамікротома з нержавіючої сталі, для дослідження кристалографії атомно-чистих ПС (100) In_4Se_3 методом ДПЕ, та спеціальною голкою при дослідженні СТМ, АСМ.

Експерименти з СТМ та ACM проводились на установці "Omicron NanoTechnology STM / AFM System" в конструкції якої передбачена можливість заміни *in situ* провідного вістря для проведення СТМ, яке виготовлялось з вольфрамової (W) дротини діаметром 500 мкм на гнучке непровідне коромисло (cantilever) для проведення ACM-досліджень поверхонь.

СТМ-дослідження топографії ПС (100) In₄Se₃ одержаних *in situ* проводились в умовах HBB (2×10^{-11} Top) при 295 К в режимі постійного струму. Струм тунелювання W-вістря – ПС (100) In₄Se₃ був 2×10^{-10} А при напрузі зміщення 1,5 В.

АСМ-топограми одержані скануванням піраміда-

2077-6772/2014/6(2)02029(7)

^{*} galiy@electronics.lnu.edu.ua

П.В. ГАЛІЙ, Т.М. НЕНЧУК, І.Р. ЯРОВЕЦЬ

льного кремнієвого коромисла (cantilever Nanosensors Pointprobe PPP-CONT Pt, з радіусом заокруглення Si-піраміди менше 7 нм та силовою константою коромисла 0,2 Н/м), в режимі постійної сили взаємодії. При цьому сила контактної взаємодії ПС – вістря в АСМ дослідженнях становила 2-4 нН. Для обробки АСМ-топограм та даних СТМ-досліджень використано спеціальне програмне забезпечення WSxM 4.0 (v.2.2), розроблене Nanotec Electronica, Іспанія (http://www.nanotec.es).

Експерименти з ДПЕ проводились з використанням вакуумного модуля BDL800IR, виробництва OCI Vacuum Microengineering (http://www.ocivm.com), зібраного на несучому фланці, що приєднується до HBB камери у якій вакуум становить 1.5×10^{-10} Тор. Використана в конструкції ДПЕ модуля електронна гармата з катодом у формі нитки з монокристалу LaB₆ забезпечувала силу струму електронного променя діаметром від 250 мкм до 1 мм у площині ПС (100) зразка, до 2 мкА, достатню для одержання, яскравих дифракційних рефлексів.

Дослідження ДПЕ починалися через ~15 хв. після сколювання у НВВ при $P = 1,5 \times 10^{-10}$ Тор та 295 К. Для візуалізації ДПЕ-картин використовувався люмінесцентний екран та їх запис цифровою камерою.

3. РЕЗУЛЬТАТИ ТА ЇХ ОБГОВОРЕННЯ

3.1 Топографія ПС (100) In₄Se₃

Одержані АСМ-топограми ПС (100) In_4Se_3 наведені на рис. 1а, де можна бачити періодичні борознисті структури, які відповідають структурі ПС (100) кристалу, вказують на існування регулярної періодичної (гофрованої) структури на ПС. Наведені профілі задовільно співпадають з періодом поверхневої гратки вздовж відповідного напрямку (b(y)), що вказує на те, що після сколювання поверхнева ґратка In_4Se_3 не перебудовується і ПС (100) є структурно стабільною.

Профіль поверхневої борознистої структури, що відтворює структуру ПС (100), наведений на рис. 1а, б, в, її ж фрагмент, разом з кристалічною структурою In4Se₃, поданий на рис. 1в. Наведений фрагмент профілю, одержаний вздовж напрямку вектора сталої кристалічної гратки b, на якому маркерами відмічені характерні відстані у періодичній структурі кристалічної поверхні (b = 12,308 Å), що демонструють задовільну відповідність профілю кристалічній структурі ПС (100) In4Se₃.

На рис. 2 наведене 2D- і 3D-зображення, з використанням FFT-Фур'е фільтрації СТМ-топограм атомно-чистих ПС (АЧПС) (100) In₄Se₃, одержаних *in situ*. СТМ-топограми, як і АСМ-топограми, вказують на те, що поверхнева ґратка ШК In₄Se₃ не перебудовується і їх ПС (100) є структурно стабільними [2]. Атоми індію в регулярних кристалічних позиціях на ПС (100) In₄Se₃ мають тенденцію до формування рядів – квазіодномірних індієвих ланцюжків вздовж напрямку c(x), що спостерігається методами як АСМ так і СТМ (рис. 2b, с).

Одержані методами СТМ та АСМ результати з кристалографії і топогрфії ПС (100) Іп₄Se₃, які наведені нижче, вказують, що періодична борозниста структура ПС добре відповідає структурі і сталим ґратки, одержаних для орторомбічних ШК In₄Se₃ методом Х-променевого структурного аналізу (Х-дифрактометрія) у роботі [1]. Результати вказують на відносну стабільність міжшарових (100) ПС, отриманих в умовах НВВ (3×10^{-11} Top) при кімнатній температурі [2, 3, 4], та перспективність використання сколів для формування поверхневих наноструктур, зокрема, нанодротів.

Рис. 1 – а) АСМ-зображення ділянки ПС (100) Іп₄Se₃ розміром 12,5 × 25 нм². б) Профіль, що отриманий вздовж лінії на АСМ-зображенні. Маркери відмічають характерні відстані у періодичній структурі ПС (1,23 нм). в) Збільшений фрагмент профілю (б), отриманий вздовж вектора b кристалічної ґратки. Маркерами відмічені характерні відстані у періодичній структурі ПС, що демонструють задовільну відповідність профілю кристалічній структурі ПС (100) Іп₄Se₃

Дослідження топографії та атомної структури сколювання (100)...

Ж. нано- електрон. ФІЗ. 6, 02029 (2014)

Рис. 2 – СТМ-зображення ділянки 30×30 нм² ПС (100) In₄Se₃ (а) та 3D (б) і 2D (в). FFT-зображення тієї самої ділянки відповідно (б). Стала поверхневої періодичної структури вздовж вектора *b* на 2D-забраженні становить 1,433 нм

3.2 Знаходження сталих гратки за експериментальними даними СТМ

СТМ-зображення (рис. За) були фільтровані із використанням 2D Фур'є фільтрування (FFT-fast Fourier transform) (рис. Зб) для знаходження періодичної структури поверхні і наступне профілювання дало періодичні відстані 1,3-1,4 нм і 0,4 нм в напрямках перпендикулярно до (рис. Зв) та вздовж (рис. Зг) поверхневих борозен. Ці значення добре узгоджуються із параметрами гратки отриманими "об'ємними" (Х-дифрактометрії [1]) або "поверхневими" (ДПЕ) дослідженнями (див. пункт 3.4).

3.3 ДПЕ атомно-чистих ПС (100) In₄Se₃ на відбивання.

Орторомбічність гратки ШК In_4Se_3 підтверджують ДПЕ-картинки, зображені на рис. 4, які за структурою розміщення дифракційних рефлексів відповідають поверхням орторомбічних структур [5, 6], демонструють наявність досконалої структури ПС (100) In_4Se_3 , одержаних *in situ*, в мінімальних областях когерентності дифрагуючого електронного променя ~0,1-1 мкм.

Дифракційні рефлекси на ДПЕ-картинках насправді є інтерференційними максимумами пружно і когерентно розсіяних плоских електронних хвиль де-Бройля вільних електронів на атомах поверхні, тому картинки ДПЕ є 2D-мірними проекціями простору хвильових векторів або ж простору оберненої гратки розмірності Å⁻¹, де відстані між рефлексами у певних напрямках є векторами оберненої гратки (див. рис. 4 ліворуч).

Експозиція ПС в атмосфері залишкових газів НВВ камери (10⁻¹⁰ Тор) впродовж часу $t_{eксn.} > 10-12$ год. приводить до зменшення інтенсивності дифракційних рефлексів та розмиття вигляду картини ДПЕ, внаслідок формуванням інтерфейсного покриття з адсорбованих газів на поверхні [7], (рис. 4), але без зміни її симетрії, що свідчить про відсутність атомної реконструкції у моношарі-пакеті ПС (100) Іп4Se3 (див. моношар-пакет (100) Іп4Se3 на рис. 5а).

Картинки ДПЕ АЧПС (100) In₄Se₃, одержані у НВВ при різних температурах (рис. 6), в широкому температурному діапазоні 77-295 К показали, що підвищення температури зразка спричиняє наступні зміни: розмиття картини ДПЕ, зменшення інтенсивності дифракційних рефлексів та зростання інтенсив-

Рис. 3 – Дані СТМ-досліджень: а) СТМ зображення частини ПС (100) In₄Se₃ розміром 50 × 50 нм² отримане в режимі постійного струму при напрузі зміщення $V_b = 1,5$ B; б) Відповідне 2D FFT зображення з профілюванням: X – вздовж та Y – перпендикулярно до поверхневих борозен; в), г) Періодичні відстані виміряні для Y та X профілів відповідно

П.В. ГАЛІЙ, Т.М. НЕНЧУК, І.Р. ЯРОВЕЦЬ

Рис. 4 – Картинки ДПЕ (54 еВ) ПС (100) Іп₄Se₃: ліворуч – відразу після сколювання *in situ* при температурі 77 К; праворуч – після експозиції ПС у НВВ $1,5 \times 10^{-10}$ Тор протягом 12 год. b^* , c^* – сталі оберненої гратки які рівні $b^* = 2\pi / b$ та $c^* = 2\pi / c$ відповідно, де b та c – сталі граток поверхні (100) Іп₄Se₃; $b^* = 0,5104(8)$ Å⁻¹; $c^* = 1,5397(4)$ Å⁻¹

Рис. 5 – Схематичне представлення елементарної комірки (а) та фізичних принципів з ДПЕ (б). а) Елементарна комірка ШК Іп₄Se₃, як структурна одиниця шару-пакету; напрямки осей XVZ збігаються з напрямком векторів сталих гратки *c*, *b*, *a*; осі X та У лежать у площині поверхні. б) Зображення пружного когерентного розсіювання повільних електронів регулярними рядами атомів поверхні. Півсфера зображує люмінесцентний єкран

ності фону. Зміна симетрії розміщення дифракційних рефлексів відсутня на ДПЕ-картинці (рис. 6), що вказує на температурну стабільність АЧПС (100) In₄Se₃ та відсутність атомної реконструкції у моношарі-пакеті ПС (100) In₄Se₃.

Відношення векторів (сталих) c^*/b^* двовимірної оберненої гратки рівне відповідно відношенню векторів (сталих) b/c прямої гратки [5, 6] і температурна залежність якого, в температурному діапазоні 77-295 К, наведена на рис. 7.

Рис. 6 – Картинки ДПЕ ПС (100) Іп₄Se₃ при різних температурах зразка: ліворуч – 77°К; праворуч – 295°К. Біля кожного рефлексу подані його індекси (порядок рефлексу – *n*)

Як можна побачити з цієї залежності, що відстані між рефлексами, які вимірювались з використанням

Рис. 7 – Температурна залежність відношення сталих гратки b/c ПС (100) In₄Se₃. Похибки для відношення b/c визначались як середньоквадратичні

графічного пакету Adobe Photoshop (http://www.adobe.com), за напрямками вздовж векторів c^* та b^* оберненої гратки змінюються зі зміною температури зразка, але температурний коефіцієнт лінійного розширення по напрямку вектора сталої гратки c є більшим, ніж температурний коефіцієнт розширення по напрямку вектора сталої гратки b, що вказує на анізотропію лінійного розширення по напрямках векторів сталих гратки b та c реальної двовимірної гратки ПС (100) In4Se3. Це можна було передбачити на основі даних праць [8, 9], де встановлена анізотропія електронних спектрів ПС (100) In4Se3 по напрямках b та c з більш близьким до металічного до напрямку c.

3.4 Оцінка сталих двовимірної гратки ПС (100) Іп₄Se₃ за картинами ДПЕ

Згідно гіпотези де Бройля електрону, що рухається із швидкістю v та має імпульс p можна поставити у відповідність плоску хвилю з довжиною λ .

$$\lambda = h / mv = h / p = h / \sqrt{2mE} , \qquad (1)$$

де *E* – енергія електрона, *h* – стала Планка, *m* – маса електрона.

В експериментах з ДПЕ типовими значеннями енергії електронів, які використовуються для дослідження кристалографії поверхні, є 2-200 еВ і довжина хвилі де Бройля (1) є співмірною сталим гратки поверхні і тому пучок електронів когерентно дифрагує на періодичних рядах поверхневих атомів (рис. 5б). Але лише пружно розсіяні на періодичних рядах атомів поверхні електрони беруть участь у формуванні дифракційно-інтерференційної картини і тому затримуючий потенціал, прикладений до сіток для сепарації електронів за їх енергіями, модуля для проведення ДПЕ-експериментів, підбирають таким чином, щоб на люмінесцентний екран попадали лише ті електрони, що зазнали пружного розсіяння (рис. 5б).

Рух падаючого на поверхню, по нормалі до неї, електрона (рис. 5б), можна описати використовуючи хвильовий вектор \vec{k} , який рівний:

$$\vec{k} = \frac{2\pi n}{\lambda} \vec{s} , \qquad (2)$$

де *n* – ціле число (порядок інтерференційного максимуму, або ж дифракційного рефлексу), *s* - одиничний вектор паралельний до напрямку падаючого електрона, λ – довжина хвилі де Бройля.

Розсіяння електронів на атомах поверхні, при розгляді ДПЕ, є пружним і енергії електронів падаючих E та зворотно розсіяних E' рівні E = E' і хвильовий вектор пружно розсіяних під кутом θ електронів $\vec{k'}$ є рівний за модулем вектору падаючих на поверхню $|\vec{k}| = |\vec{k'}|$ (рис. 56).

Хвильовий вектор падаючого на поверхню електрона не має паралельної до площини поверхні кристалу складової, так як він направлений перпендикулярно до неї (рис. 5 б). Однак хвильовий вектор пружно відбитого електрона має паралельну \vec{k}'_{\Box} та перпендикулярну \vec{k}'_{\perp} до площини поверхні складові (рис. 5 б). Паралельна складова \vec{k}'_{\Box} є вектором оберненої гратки, який описує дозволені, умовно кажучи, "моди" кристалу поверхні і її значення рівне:

$$\left|\vec{k}_{\Box}'\right| = \frac{2\pi}{a}n\,,\tag{3}$$

де n – порядок (індекс) дифракційного рефлексу, a – стала гратки кристалу (рівна b або c на поверхні сколювання (ПС) (100) In₄Se₃). Згідно рис. 5 б, співвідношення між векторами може бути представлене наступним виразом [10]:

$$\sin\theta = \frac{\left|\vec{k}_{\perp}'\right|}{\left|\vec{k}'\right|} = \frac{2\pi}{a\left|\vec{k}'\right|}n \ . \tag{4}$$

Енергію електрона можна визначити використовуючи хвильовий вектор (число) пружно відбитого електрона:

$$E = \frac{\left(\hbar\vec{k}'\right)^2}{2m_e}\,,\tag{5}$$

де \hbar – стала Планка, m_e – маса електрона, \bar{k}' – хвильове число пружно відбитого електрона. Виконавши перестановки та заміни, вираз (5) можна переписати у наступному вигляді:

$$\left|\vec{k}'\right| = \sqrt{\frac{2m_e E}{\hbar^2}} \approx 0.5123\sqrt{E} , \qquad (6)$$

де E – енергія електрона в еВ, а $|\vec{k'}|$ – хвильове число в $Å^{-1}$. Підставляючи (6) у (4), отримаємо:

$$\sin\theta = n \frac{2\pi}{a\left(0,5123\sqrt{E}\right)}.$$
(7)

Треба зауважити, що при збільшенні енергії падаючих електронів кут між хвильовими векторами падаючого та відбитого електронів зменшується. Тобто, на ДПЕ-картинах, одержаних в діапазоні енергій 25-75 еВ, при збільшенні енергії падаючих електронів, спостерігається їх стискання (рух рефлексів до центру симетричної ДПЕ-картинки без зміни її симетрії) із збільшенням числа видимих дифракційних рефлексів –

поява у полі зору люмінесцентного екрану дифракційних рефлексів вищих порядків.

Для визначення відстані від люмінесцентного екрану до зразка використали результати ДПЕ ПС (100) MgO з кубічною граткою (a = 4,212 Å) при відомих умовах проведення експерименту та геометричних розмірах ДПЕ-модуля BDL-800 (http://www.ocivm.com).

Скориставшись формулою (7), можна одержати вираз (8) для знаходження сталих двовимірної гратки ПС (100) In4Se₃, враховуючи енергію падаючих електронів E, кут розсіяних θ електронів, які дають дифракційно-інтерференційні рефлекси на люмінесцентному екрані та порядок n дифракційного рефлексу на ДПЕ-картині, врахувавши геометрію ДПЕкартини (рис. 6).

$$a = \frac{2\pi}{\sin\theta \left(0.5123\sqrt{E}\right)} n \,, \tag{8}$$

де *n* – порядок (індекс) дифракційного рефлексу, відповідно до вигляду картин ДПЕ (рис. 6).

Були розглянуті та проаналізовані ті ДПЕ-картини, які одержані при таких енергіях електронів при яких дифракційні рефлекси різних порядків "з'являлися" на краю люмінесцентного екрану, що спрощує визначення кута θ , як граничного і рівного 50°. Двовимірна гратка ПС (100) Іп₄Se₃ є прямокутною, відповідно до кристалографії Іп₄Se₃ [1] і вона має дві сталі: у паралельному та перпендикулярному напрямках відносно поверхневих індієвих "ланцюжків" [1].

У результаті розрахунків сталих поверхневих граток в моделі, яка запропонована в [10], для ПС (100) Іп₄Se₃ вперше методом ДПЕ, одержані значення сталих двовимірних гратки *b* та *c* у площині ПС (100) : b = 11,475 Å, c = 3,734 Å, які є співмірними із результатами отриманими методом Х-дифрактометрії [1] (a = 15,297(1) Å; b = 12,308(1) Å; та c = 4,0810(5) Å), що підтверджує адекватність вибраної моделі для розрахунків.

Дещо менші значення сталих гратки порівняно з результатами, отриманими Х-дифрактометрією [1], обумовлені похибками "просторової аберації" ДПЕ-модуля, де зображення ДПЕ-рефлексів формувалося на півсферичному люмінесцентному екрані, а фіксувалося відеокамерою в площині, що "зменшує" відстані між спостережуваними дифракційними рефлексами (рис. 5б).

4. ВИСНОВКИ

Досліджено методами СТМ, АСМ топографію, ДПЕ – атомну структуру і кристалографію ПС (100) In₄Se₃, одержаних шляхом сколювання *in situ* по міжшарових щілинах.

Аналіз результатів АСМ, СТМ-експериментів вказує на існування борознистого рельєфу перпендикулярно до осі b та збереження регулярності поверхневої структури.

Одержані АСМ-, СТМ-топограми вказують на існування періодичної, гофрованої структури на ПС. Показано, що одержані, вздовж основних напрямів, періодичні профілі співпадають зі сталими поверхневої гратки вздовж відповідних напрямків (c(x), b(y)), що вказує на те, що після сколювання поверхня

П.В. ГАЛІЙ, Т.М. НЕНЧУК, І.Р. ЯРОВЕЦЬ

(100) In₄Se₃ не перебудовується і є мікроструктурно стабільною.

Картинки ДПЕ АЧПС (100) Іп4Se₃, одержаних у НВВ свідчать про локальну досконалість та орторомбічність ПС (100) ШК Іп4Se₃. Експозиція ПС в атмосфері залишкових газів НВВ камери (10^{-10} Top) і, як наслідок, формування тонкого інтерфейсного шару на поверхні, приводить до зменшення інтенсивності дифракційних рефлексів та розмиття картини ДПЕ, але без зміни її симетрії і, свідчить про відсутність атомної реконструкції ПС.

Картинки ДПЕ АЧПС (100) In₄Se₃, одержаних у НВВ при різних температурах показали, що підвищення температури зразка приводить до: розмиття картини ДПЕ, зменшення інтенсивностей дифракційних рефлексів та зростання фону, але без зміни симетрії ДПЕ-картинки. Останне свідчить про температурну стабільність АЧПС (100) In₄Se₃ з відсутністю атомної реконструкції у моношарі-пакеті ПС (100) In₄Se₃.

Встановлена анізотропія лінійного розширення ПС (100) In_4Se_3 по напрямках вектора сталих гратки \boldsymbol{b} та \boldsymbol{c} : температурний коефіцієнт розширення по напрямку вектора сталої гратки \boldsymbol{c} є більшим ніж температурний коефіцієнт розширення по напрямку вектора сталої гратки \boldsymbol{b} .

Проведені розрахунки значень, за результатами ДПЕ, сталих двовимірної гратки, що знаходяться у площині ПС (100) орторомбічних ШК In₄Se₃, задовільно співпадають з результатами отриманими методами ACM та CTM та знаходяться у межах похибки вказаних методик, співпадаючи із значеннями одержаними методом *X*-дифрактометрії.

Підтверджена коректність використання фільтрування зображень топограм, отриманих СТМ та адекватність вибраної моделі для оцінки сталих двовимірних граток ПС за результатами ДПЕ. Проаналізовані причини різниці отриманих значень та результатів отриманих методом Х-дифрактометрії.

Таким чином наноструктуровані гофровані поверхні сколювання (100) In_4Se_3 є структурно стабільними щодо симетрії поверхневої гратки вони також не зазнають температурної атомної реконструкції і сталі поверхневої гратки залишаються слабкозмінними у широкому температурного видовження і тому анізотропні, слабко провідні напівпровідникові ПС (100) In_4Se_3 можуть бути використані в якості матриць / шаблонів / підкладок для створення поверхневих провідних (In / Au) нанодротів, наношнурів чи інших наноструктур.

подяка

Автори висловлюють подяку доктору Лозовому Ярославу Богдановичу, Director of XPS Laboratory, Nanoscale Characterization Facility, Department of Chemistry, Indiana University за допомогу у проведенні експериментів з дифракції повільних електронів на поверхнях сколювання.

Исследования топографии и атомной структуры поверхностей скалывания (100) слоистых кристаллов In₄Se₃

П.В. Галий, Т.М. Ненчук, И.Р. Яровец

Львовский национальный университет имени Ивана Франко, ул. Драгоманова, 50, 79005 Львов, Украина

Методами сканирующих туннельной, атомно-силовой микроскопий (СТМ, АСМ) и дифракции медленних электронов (ДМЭ) на отражение исследована топография, кристаллография и атомная структура поверхностей скалывания (ПС) (100) слоистых кристаллов In₄Se₃, полученных путем скалывания in situ. Полученные результаты указывают на существование периодической, гофрированной структуры на ПС. Показано , что ПС (100) In₄Se₃ являются структурно стабильными и не испытывают атомной реконструкции в широком температурном диапазоне 77-295 К. Установлена анизотропия теплового расширения ПС по основным кристаллолографическим направлениям в плоскости скола (100) In₄Se₃. Проведенные расчеты значений постоянных двухмерной решетки, находящихся в плоскости ПС (100) орторомбического слоистого кристалла In_4Se_3 по результатам ДМЭ (b = 11,475 Å и c = 3,734 Å) удовлетворительно совпадают с результатами полученными методами ACM и CTM (b = 13-14 Å u c = 4 Å) и находятся в пределах погрешности указанных методик , совпадая со значениями полученными методом X-дифрактометрии (b = 12,308(1) Å и c = 4,0810(5) Å). Кроме того, полученные результаты исследования структуры ПС, указывают на корректность использования фильтрования изображений топограмм, полученных методом СТМ и адекватность использованной модели для расчета постоянных поверхностной решетки ПС (100) In₄Se₃ по результатам ДМЭ. Проанализировано влияние строения ДПЕ-модуля на полученные результаты.

Ключевые слова: Слоистые кристаллы, Межслойные поверхности скалывания, Топография, Атомная структура, Сканирующая туннельная микроскопия, Атомно-силовая микроскопия, Дифракция медленных электронов.

Topography and Atomic Structure Investigations Of (100) Cleavage Surface of In₄Se₃ Layered Crystals

P.V. Galiy, T.M. Nenchuk, I.R. Yarovets

Ivan Franko Lviv National University, 50, Dragomanov Str., 79005 Lviv, Ukraine

The atomic microstructure and crystallography of (100) surfaces of In_4Se_3 layered crystals obtained by cleavage in situ were studied by the methods of scanning tunneling and atomic force microscopies (STM, AFM) and low energy electron diffraction (LEED) for reflection. The obtained results indicate the existence of periodic corrugated structures on the cleavage surface. It is shown that (100) In_4Se_3 cleavage surface is structurally stable and doesn't undergo reconstruction in a wide temperature range of 77-295 K. The anisotropy of thermal expansion along the main crystallography directions in the (100) In_4Se_3 cleavage plane has been shown. The evaluation of the two-dimensional lattice constant in the cleavage (100) surface plane of orthorhombic In_4Se_3 layered crystal was done. The calculated values of the lattice constants in consequence of LEED study, such as b = 11,475 Å and c = 3,734 Å, coincide well with those obtained by the AFM and STM (b = 13.14 Å and c = 4 Å), and correlate, within the errors limits, with the corresponding values obtained by X-ray diffraction (b = 12,308(1) Å and c = 4,0810(5) Å). Besides, the obtained results of cleavage surface structure studies show the correctness of filtering application concerning topography images and indicate the adequacy of the model used for calculations of the cleavage (100) surfaces lattice constants of In_4Se_3 in accordance with the LEED results. The influence of the LEED experimental module structure on the results has been considered.

Keywords: Layered crystals, Interlayer cleavage surfaces, Topography, Atomic structure, Scanning tunneling microscopy, Atomic force microscopy, Low energy electron diffraction.

СПИСОК ЛІТЕРАТУРИ

- 1. П.В. Галій, Т.М. Ненчук, О.Р. Дверій, О.П. Поплавський, Я.М. Фіяла, *ФХТТ* 10, 813 (2009).
- P.V. Galiy, T.M. Nenchuk, O.R. Dveriy, A. Ciszewski, P. Mazur, S. Zuber, Вісник Львів. ун-ту. Сер. фіз. 43, 28 (2009).
- Ya.B. Lozovyj, M. Klinke, En Cai, I. Rodriges, J. Zhang, L. Makinistian, E.A. Albanesi, Y.M. Fiyala, J. Liu, P.A. Dowben P.V. Galiy, *Appl. Phys. Lett.* **92**, 122107 (2008).
- P. V. Galiy, T.M. Nenchuk, O.R. Dveriy, A. Ciszewski, P. Mazur, S. Zuber, *Functional Mater.* 16, 279 (2009).
- К. Оура, В.Г. Лифшиц, А.А. Саранин, А.В. Зотов, М. Катаяма, Введение в физику поверхности (Москва: Наука: 2005).
- Д. Вудраф, Т. Делчар, Современные методы исследования поверхности, (Москва: Мир: 1989).

- П.В. Галій, Т.М. Ненчук, О.Я. Мельник, Й.М. Стахіра, Укр. фіз. журн. 48, 256 (2003).
- Ya.B. Losovyj, L. Makinistian, E. Albanesi, A.G. Petukhov, J. Liu, P.V. Galiy, O.R. Dveriy, P.A Dowben, *J. Appl. Phys.* 104, 083713 (2008).
- Б.Ф. Ормонт, Введение в физическую химию и кристаллохимию полупроводников (Москва: Высшая школа: 1973).
- 10. Erica T. Shen, Nancy Yu, Dr. Kenneth T. Park, Lowenergy electron diffraction and ultraviolet photoemission spectroscopy study of (1×1) TiO₂ (110). CASPER Summers – Research Experience for Undergraduates (REU) Program, 2009 REU Final Projects. Baylor University, Waco, USA. -2009, 7 p.