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We  study  the  role  of  the  magnetic  field  of  eddy  currents,  which  are  induced  in  conducting  single-
domain particles of spherical form, in the magnetization dynamics. To describe the dynamic behavior of
magnetization and electromagnetic field generating by the time-dependent magnetization, we use the cou-
pled system of the Landau-Lifshitz-Gilbert (LLG) and Maxwell equations. Assuming that the magnetiza-
tion direction depends on time in an arbitrary way, we find the solution of the Maxwell equations in the
quasi-stationary approximation and calculate the averaged (over the particle volume) magnetic field of ed-
dy  currents.  Considering  this  field  as  an  extra  contribution  to  the  effective  magnetic  field  acting  on  the
particle magnetic moment, we derive the LLG equation in which the influence of eddy currents is com-
pletely accounted for by introducing an additional Gilbert damping parameter of electrodynamic origin.

Keywords: Conducting single-domain particles, Landau-Lifshitz-Gilbert equation, Maxwell equations,
Quasi-stationary approximation, Eddy currents, Gilbert damping parameter.

PACS numbers: 75.78. – n, 41.20. – q

1. INTRODUCTION

Investigation of the magnetic properties of single-
domain ferromagnetic particles and their ensembles is
an important scientific problem. From the theoretical
point of view, interest to such particles is conditioned
by a number of physical phenomena, such, for example,
as quantum tunneling of the magnetic moment [1], sto-
chastic resonance [2], precessional switching of magne-
tization [3, 4] and switching by microwave radiation [5,
6]. On the other hand, single-domain particles find prac-
tical application (or they have a large application poten-
tial) in high-density data storage [7, 8], spintronics [9,
10], biomedicine [11-13], etc.

If the exchange interaction energy in a ferromagnet
considerably exceeds the magnetic one, then the length
of the magnetization vector can be considered constant.
In this case, dependence of the direction of the magnet-
ization vector on the coordinates and time is often des-
cribed by the Landau-Lifshitz (LL) equation [14] or by
the equivalent, but more preferred from the physical
point view, Landau-Lifshitz-Gilbert (LLG) equation [15].
(Further, taking into account the equivalence of these
equations, we will talk about the LLG equation, even if
the LL equation was used in original works.) At suffi-
ciently small (nanometer) sizes of ferromagnetic parti-
cles, a single-domain state characterized by the uniform
distribution of magnetization is realized. As a conse-
quence, LLG equation is greatly simplified; thereby it
is  widely  used  for  the  study  of  nonlinear  dynamics  of
the magnetization in single-domain particles [16].

Since the considered particles have nanometer siz-
es, thermal fluctuations can play an important role in
the description of their magnetic properties. For their
account it is proposed in the work [17] to use the LLG
equation with the effective magnetic field containing a
random (vector) process of the white-noise type. This
approach allowing to use power methods of the Lange-
vin and Fokker-Plank equations was found to be so
fruitful that currently stochastic LLG equation became
one of the main tools of the investigation of magnetic
fluctuations (see, for example, [18]). In particular, in

the framework of the given approach we have studied a
number of effects in the systems of single-domain par-
ticles, whose existence is directly connected with ther-
mal fluctuations [19-24].

Recently, great attention is devoted to the investi-
gations of nanocomposite materials [25, 26] including
those which contain single-domain metallic particles.
Magnetization dynamics in such particles is not already
described by usual LLG equation, since in the effective
magnetic field acting on the atomic magnetic moments
it is necessary to take into account the magnetic field of
eddy currents induced by the time-dependent magnetic
induction. It is well known (see, for example, [27]) that
in this case the LLG equation should be considered si-
multaneously with the Maxwell equations. In this case,
using qualitative considerations, it is not difficult to find
the order of magnitude of the magnetic field of eddy
currents and estimate its influence on the magnetiza-
tion dynamics. But analytical determination of this field
is  a  rather  serious  problem.  As  far  as  we  know,  this
problem has been most thoroughly analyzed in the work
[28] within the quasi-stationary approximation. However,
the authors of [28] have used an additional simplifying
assumption which did not allow them to find the non-
uniform magnetic field of eddy currents inside a particle
and obtain the exact expression for the Gilbert damping
parameter of electrodynamic origin. Since precise account
of the conduction effects may play a significant role for
the correct description of the magnetization dynamics in
conducting particles (see below), finding of the induction
electromagnetic field is of great importance. The present
work is devoted to the analytical solution of this problem.

2. MODEL DESCRIPTION

In the present work we consider ferromagnetic par-
ticles of spherical form, whose radius R is supposed to
be so small (its upper boundary does not usually exceed
a few tens of nanometers) that a single-domain state is
realized. In the simplest case this state can be characte-
rized by the constant in magnitude magnetization vector
ۻ = |ۻ|) (ݐ)ۻ = ܯ = const), whose direction is changed
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in time according to the LLG equation [29]
ௗۻ
ௗ௧
= ۶eff×ۻߛ− + ఈ

ெ
ۻ × ௗۻ

ௗ௧
. (2.1)

Here <)ߛ 0) is the gyromagnetic ratio, <)ߙ 0) is  the
Gilbert damping parameter, ۶ୣ୤୤ = ۶ୣ୤୤(ݐ) is the effec-
tive magnetic field acting on the vector sign ,ۻ × de-
notes the outer product. The effective magnetic field for
conducting particles can be written in the form

۶eff = − డௐೌ
డۻ

+ऒതതത, (2.2)

where ௔ܹ is the volume energy density of magnetic
anisotropy,

ऒതതത = ଵ
௏
∫௏݀ܚ	ऒ(ܚ, (ݐ (2.3)

is the magnetic field ऒ(ܚ, inside a particle averaged (ݐ
over the particle volume ܸ = ቀସగ

ଷ
ቁܴଷ, -is the radius ܚ

vector of observation point in the Cartesian coordinate
system, whose origin coincides with the particle center.
It is convenient to represent the field ऒ(ܚ, as a sum (ݐ
of the magnetic field ۶ = ,ܚ)۶ of eddy currents, which (ݐ
are induced by variable magnetic induction ۰଴ = ۶ௗ +
۶ௗ) ۻߨ4 = ߨ4)− 3⁄ is the demagnetizing magnetic ۻ(
field inside a spherical particle), and the external mag-
netic field ۶଴ = ۶଴(ݐ) modified by the magnetic fields of
eddy currents. At |۶଴| ≪ |۰଴| we can neglect these fields,
therefore we can write ऒതതത = ۶ഥ +۶଴. Introducing later
the effective magnetic field

۶eff
(଴) = − డௐೌ

డۻ
+۶଴ (2.4)

for non-conducting particles, the LLG equation (2.1) is
re-written in the form

ௗۻ
ௗ௧
= ×ۻߛ− (۶eff

(଴) +۶ഥ) + ఈ
ெ
ۻ × ௗۻ

ௗ௧
. (2.5)

Thus, in the considered approximation all features
of the magnetization dynamics in conducting particles
are conditioned by the influence of the averaged mag-
netic field ۶ഥ . However, since, according to the law of
electromagnetic induction, ۶ഥ  depends on ۻ݀ ⁄ݐ݀ , equa-
tion (2.5) is not closed. Therefore, in the general case,
when ۶ഥ  is defined by all induction currents flowing in a
particle, this equation should be solved simultaneously
with the Maxwell equations. While numerical solution of
the system of the LLG and Maxwell equations does not
cause principal difficulties (see, for example, [30, 31]),
analytical determination of the averaged magnetic field
of eddy currents represents a certain problem. We know
only a single work [28], in which system of the Maxwell
equations in the quasi-stationary approximation is sol-
ved analytically for a spherical ferromagnetic particle.
The authors of the mentioned work have calculated the
magnetic field of eddy currents ,ܚ)۶ in the center of a (ݐ
particle ܚ) = ૙) and supposed that ۶ഥ = ۶(૙, -Howev .(ݐ
er, as it will be shown below, ,ܚ)۶ strongly depends (ݐ
on and ,ܚ ۶(૙, gives only a qualitative estimate of the (ݐ
averaged magnetic field ۶ഥ .

For the quantitative determination of ۶ഥ  we will use
the system of the Maxwell equations in the quasi-statio-
nary approximation [32]. Inside a ball (when ݎ = |ܚ| ≤ ܴ)
this system of equations has the form

rot۳ = − ଵ
௖
డ
డ௧
(۶ + ۰଴),								div۳ = 0,

rot۶ = ସగ
௖
div۶								,ܒ = 0, (2.6)

where ۳ = ,ܚ)۳ ,is the induction electric field strength (ݐ
ܿ is the light speed, ܒ = ,is the electric current density ۳ߪ
is the particle conductivity. For simplification we here ߪ
assume that magnetic permeability of a particle, as well
as the magnetic and dielectric permeability of the envi-
ronment are equal to unit. In principle, for the deter-
mination of the electromagnetic field in a whole space
the system of equations (2.6) should be supplemented
by the system of  the  Maxwell  equations  for  the  quasi-
stationary field at ݎ > ܴ and the corresponding bounda-
ry conditions. However, later we will ascertain that in
the considered case the averaged magnetic field ۶ഥ  of
eddy currents inside a particle can be determined di-
rectly from (2.6).

In the quasi-stationary approximation, the electro-
magnetic field frequency ߱ should satisfy the condi-
tions ߱ ≪ ܿ/ܴ and ߱ ≪ The first of these conditions .ߪ
provides smallness of the field change in the vicinity of
a particle, and the second condition allows to neglect
the bias current in comparison with the ݐ߲/۳߲(ߨ1/4)
conduction current Assuming that .ܒ has the meaning ߪ
of stationary conductivity, we should require the ful-
fillment of additional condition ߱ ≪ 1/߬଴, where ߬଴ is
the electron mean free time in a conductor (usually at
room temperature ߬଴~10ିଵଷ	s). Since we consider the
single-domain particles (ܴ < 10ଶ	nm) of good conductors
10ଵ଺~ߪ) − 10ଵ଼	sିଵ), the condition min{ܿ/ܴ, ,ߪ 1/߬଴} = 1/߬଴
takes place, according to which the Maxwell equations
in the form of (2.6) are valid at ߱߬଴ ≪ 1.

If this condition holds, the first equation in (2.6)
admits further simplification. Indeed, taking into ac-
count that -ଶ, we obtain the following esܿ/ܯଶܴߪ߱~|۶|
timate: |۶|/|۰଴|~߱߬଴ߟ) ߟ = ଶ/߬଴ܿଶ). Sinceܴߪ max1~ߟ
and ߱߬଴ ≪ 1, it follows from here that we can neglect
the field ۶ in comparison with ۰଴. Also considering the
fact that ۰଴ = ߨ8) 3⁄ and ۻ( ܒ = equations (2.6) at ,۳ߪ
߱߬଴ ≪ 1 are reduced to

rot۳ = − ଼గ
ଷ௖

ௗۻ
ௗ௧
,								div۳ = 0, (2.7a)

rot۶ = ସగఙ
௖
۳,								div۶ = 0. (2.7b)

The  main  advantage  of  equations  (2.7)  consists  in  the
following: equations (2.7a) for the induction electric field
do not depend on the magnetic field strength of indu-
ction currents. This allows to solve firstly equations
(2.7a), and then, using equations (2.7b), to obtain ۶.

3. SOLUTION OF THE MAXWELL EQUATIONS

3.1 Induction electric field

Induction electric field induced by the time-depen-
dent magnetization, is defined by equations (2.7a). Tak-
ing into account the relation rot(܉ × (ܚ = where ,܉2 is ܉
the vector independent on the spatial variables, solution
of equations (2.7a), in which a preferable direction is ab-
sent, can be searched in the form ۳ = ܉ × ,In this case .ܚ
the second equation in (2.7a) is satisfied identically, and
the first one gives ܉ = Thus, induction .ݐ݀/ۻ݀(3ܿ/ߨ4)−
electric field inside a conducting spherical particle is
given by the formula
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۳ = − ସగ
ଷ௖

ௗۻ
ௗ௧
× .ܚ (3.1)

According to (3.1), vector equation for the force lines
of this field, ܚ݀ × ۳ = 0, is equivalent to the following
two scalar equations:

ܚ݀ ∙ ௗۻ
ௗ௧

= ܚ݀								,0 ∙ ܚ = 0, (3.2)

where is the differential of the radius-vector ܚ݀ -de ܚ
scribing any field line, dot denotes the scalar product.
The first equation in (3.2) shows that field lines lie in
the planes perpendicular to the vector ,ݐ݀/ۻ݀  and the
second equation – that field lines represent the concen-
tric circles, whose centers are located on a straight line
passing through the origin of coordinates (particle cen-
ter) in the direction of the vector .(see Fig. 1) ݐ݀/ۻ݀
Such structure of the field lines implies that boundary
condition for the current density on the particle sur-
face, ݆௡ = 0 (index ݊ denotes the normal component of
the vector .holds automatically ,(ܒ

Fig. 1 – Schematic representation of the force lines of electric
field induced by the time-dependent magnetization and force
lines of magnetic field of eddy currents generated by the in-
duction electric field. For illustrative purposes, we only show
the electric  field  lines  lying in  the diametral  plane and mag-
netic field lines crossing it at the fixed distance from the parti-
cle center

3.2 Magnetic field of eddy currents

Inside a particle, magnetic field of eddy currents,
which are induced by the electric field (3.1), satisfies
the system of equations (2.7b), and outside a particle –
the same system of equations with ߪ = 0. Solution of
these equations we will seek in the form of ۶ = rotۯ,
where ۯ = ,ܚ)ۯ is the vector potential of magnetic (ݐ
field. Assuming that potential has the Coulomb calibra-
tion, divۯ = 0, and taking into account that in this case
rot rot ۯ = −Δۯ (Δ is the Laplace operator), we obtain
the vector Poisson equation

Δۯ = ଵ଺గమఙ
ଷ௖మ

ܴ)ܪ − (ݎ ௗۻ
ௗ௧
× ܚ (3.3)

(ݔ)ܪ) = 0 at ݔ < 0 and (ݔ)ܪ = 1 at ݔ ≥ 0) which deter-
mines the vector potential in t whole space.

It is well known (see, for example, [33]) that partic-
ular solution of this equation disappearing at ݎ → ∞
has the following form:

ۯ = − ସగఙ
ଷ௖మ

ௗۻ
ௗ௧
× ∫௏

ᇱܚᇱௗܚ
|ᇱܚିܚ|

. (3.4)

Vector function of coordinates specified by the volume
integral

(ܚ)۷ = ∫௏
ᇲܚᇲௗܚ

|ᇲܚିܚ|
, (3.5)

can be easily calculated. To this end, we re-write the
desired integral in the spherical coordinate system and
direct the z-axis of the rectangular coordinate system
along the vector ,In this case .ܚ ܚ = ௭ is the unit܍) ௭܍ݎ
vector along the z-axis) and formula (3.5) is reduced to

(ܚ)۷ = ௭܍ߨ2 ∫ ∫ ௥ᇲయ ୱ୧୬ఏ ୡ୭ୱఏௗ௥ᇲௗఏ
ඥ௥మା௥ᇲమିଶ௥௥ᇲ ୡ୭ୱఏ

గ
଴

ோ
଴ . (3.6)

Then, introducing a new integration variable ݔ = cosߠ
and using the tabulated integral [34]

∫ ௫ௗ௫
√௔௫ା௕

= ଶ(௔௫ିଶ௕)
ଷ௔మ ݔܽ√ + ܾ,

we obtain

∫ ୱ୧୬ ఏ ୡ୭ୱ ఏௗఏ
ඥ௥మା௥ᇲమିଶ௥௥ᇲ ୡ୭ୱ ఏ

గ
଴ = ଶ

ଷ
ቊ
′ݎ)			ଶݎ/ᇱݎ ≤ (ݎ
ᇱݎ)				ᇱమݎ/ݎ > .(ݎ

 (3.7)

Hence, integrating in (3.6) over -ᇱ, we come to the folݎ
lowing representation of the function :(ܚ)۷

(ܚ)۷ = ଶగ
ଵହ
ܚ ቊ5ܴ

ଶ − ݎ)			ଶݎ3 ≤ ܴ)
2ܴହ/ݎଷ									(ݎ > ܴ),

(3.8)

according to which we find from (3.4)

ۯ = − ଼గమఙ
ସହ௖మ

ௗۻ
ௗ௧
× ቊ5ܴܚ

ଶ − ݎ)			ଶݎ3 ≤ ܴ)
2ܴହ/ݎଷ									(ݎ > ܴ).

(3.9)

Finally, using formula ۶ = rotۯ and easily verifia-
ble relation

rot[݂(ݎ)	܉ × [ܚ = ቀ2݂(ݎ) + ݎ ௗ௙(௥)
ௗ௥

ቁ ܉

− ଵ
௥
ௗ௙(௥)
ௗ௥

܉) ∙ ܚ(ܚ

is an arbitrary function of (ݎ)݂) vector ,ݎ does not ܉
depend on the spatial variables), we obtain the magnet-
ic field strength of eddy currents both inside a particle
ݎ) ≤ ܴ),

۶ = − ଵ଺గమఙ
ସହ௖మ

ቂ(5ܴଶ − ۻଶ)ௗݎ6
ௗ௧

+ 3ቀௗۻ
ௗ௧
∙ ቁܚ ቃ, (3.10)ܚ

and outside a particle (ݎ > ܴ),

۶ = ଵ଺గమఙோఱ

ସହ௖మ௥య
ቂௗۻ
ௗ௧
− ଷ

௥మ
ቀௗۻ
ௗ௧
∙ ቁܚ .ቃܚ (3.11)

The last result, magnetic field outside a particle, can be
also represented as the magnetic field of a point dipole

۶ = − ૚
௥య
ૄ + ଷ

௥ఱ
(ૄ ∙ ,ܚ(ܚ (3.12)

where

ૄ = − ଵ଺గమఙோఱ

ସହ௖మ
ௗۻ
ௗ௧

(3.13)

is the particle dipole magnetic moment conditioned by
the  flowing  eddy  currents,  which  are  induced  by  the
time-dependent magnetization .ۻ  We  also  note  that
magnetic fields (3.10) and (3.11) have the rotational
symmetry with respect to the (instantaneous) axis pas-
sing through the origin of coordinates parallel to the
vector .(see Fig. 1) ݐ݀/ۻ݀
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4. EFFECTIVE LLG EQUATION

Now, using (3.10), we can find the averaged over
the particle volume magnetic field of eddy currents
۶ഥ = (1/ܸ)∫௏݀ܚ	۶. Taking into account that

ଵ
௏
∫௏݀ܚ = 1,					 ଵ

௏
∫௏݀ܚ	ݎ

ଶ = ଷ
ହ
ܴଶ,

ଵ
௏
∫௏݀ܚ ቀ

ௗۻ
ௗ௧
∙ ቁܚ ܚ = ଵ

ହ
ܴଶ ௗۻ

ௗ௧
(4.1)

(these integrals can be easily calculated passing to the
spherical coordinates), for the desired average field we
obtain the following expression:

۶ഥ = − ଷଶగమఙோమ

ସହ௖మ
ௗۻ
ௗ௧

. (4.2)

In accordance with the Lenz rule, direction of this field
is opposite to the direction of the vector We .ݐ݀/ۻ݀
should also note that because of the nonuniformity of
magnetic field of eddy currents, the field value in the
particle center considerably exceeds the average value:
|۶(૙, |۶ഥ|/|(ݐ = 2.5.

Finally, substituting the average field (4.2) into the
equation (2.5), we come to the effective LLG equation

ௗۻ
ௗ௧
= ۶eff×ۻߛ−

(଴) + ఈାఈ഑
ெ

×ۻ ௗۻ
ௗ௧

, (4.3)

which describes the magnetization dynamics in condu-
cting spherical particles being in a single-domain sate.
According to this equation, influence of the conductivity
on the magnetization dynamics is completely accounted
for by introducing an additional (relative to the Gilbert
damping parameter Gilbert damping parameter (ߙ

ఙߙ = ଷଶగమఙோమఊெ
ସହ௖మ

(4.4)

of electrodynamic origin. We emphasize that this result
is obtained using the condition of quasi-stationarity of
electromagnetic field and approximation of static con-
ductivity, which, as it was established in the second
section, hold at ߱ ≪ 1/߬଴	~10ଵଷ	sିଵ. This means that,
since intrinsic frequency of magnetization precision of
ferromagnetic particles does not usually exceed the va-
lue of 10ଵଵ	sିଵ, the effective LLG equation (4.3) is appli-
cable in a wide frequency range including the ferro-
magnetic resonance region.

In conclusion, we discuss how important is account-
ing of conductivity in the description of the magnetiza-
tion dynamics. It is seen from equation (4.3) that this
accounting is necessary if electrodynamic damping pa-
rameter ఙ isߙ  comparable  or  exceeds  the  damping  pa

rameter Depending on the particle material and .ߙ
character of magnetic dynamics, the value of the latter
parameter is usually in the range from 10ିସ to 10ିଵ (for
example, in garnets -10ିସ‒10ିଷ). For illustrative pur~ߙ
poses, we will find ఙ for iron particles. Assuming thatߙ
(in the CGS system) ߪ = 10ଵ଼	sିଵ, ܯߨ4 = 2.2 ∙ 10ସ	Gs and
ߛ = 1.76 ∙ 10଻	sିଵ × ,ଵିݏܩ  we  obtain  from  (4.4) ఙߙ ≈ 2.4 ∙
10ି଺ܴଶ, where R is measured in nanometers. Thus, for
example, if ܴ = 10	nm, then ఙߙ ≈ 2.4 ∙ 10ିସ. The given
estimates show that damping parameters ఙ andߙ can ߙ
be of the same order and, consequently, in these cases
for the description of the magnetization dynamics one
should use the effective LLG equation (4.3).

5. CONCLUSIONS

The influence of the conductivity of single-domain
ferromagnetic particles of spherical form on the dynam-
ics of their magnetization has been studied. Considera-
tion has been performed in the framework of the model
which uses the coupled system of the Landau-Lifshitz-
Gilbert and Maxwell equations. Connection between these
equations is carried out due to the fact that in the LLG
equation the effective magnetic field contains averaged
(over the particle volume) magnetic field of eddy cur-
rents which is derived from the Maxwell equations. In
turn, the Maxwell equation describing the Faraday law
of electromagnetic induction contains magnetization,
whose dynamics obeys the LLG equation. The important
feature of the Maxwell equations written in the quasi-
stationary approximation consists in the fact that these
equations for the considered problem geometry can be
solved in the general case of an arbitrary dependence of
magnetization direction on time. This allowed to find
the exact expression for the magnetic field of eddy cur-
rents in the whole space and calculate its average value
in the vicinity of a particle. Finally, using the last re-
sult, we have obtained the effective LLG equation de-
scribing the magnetization dynamics in conducting si-
ngle-domain particles, in which influence of eddy cur-
rents is completely accounted for by introducing the
additional Gilbert damping parameter. Analysis of the
used approximations has shown that this equation desc-
ribes both slowly and rapidly changing processes, whose
characteristic frequencies do not exceed 10ଵଷ	sିଵ.
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