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This paper proposes the design of a biosensor to characterize the dielectric and conductive properties of 

biological materials (for example blood or water) by impedance spectroscopy. Particularly, its design opti-

mized the geometric structure interdigitated electrodes. This optimization allows extending the frequency 

range of measurement by reducing the polarization effect. Polarization effect is manifested by an interface 

capability (or double layer) from interaction between ions and molecules in the boundary between the sur-

face of the electrolyte and the electrodes, it increases the measurement error at low frequencies. This paper 

recommends also a novel method to determine the parameters (relative permittivity, thickness and capaci-

tance per unit area) of the double layer (DL) at the contact surface of the electrode with the solution. 

CoventorWare software was utilized to modelize of interdigital sensor structure in three dimensions (3D) 

to verify the analytical results and evaluate the influence of geometrical parameters and the dielectric 

properties of the medium on bioelectrical impedance. 
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1. INTRODUCTION 
 

The characterization of biological mediums can ben-

efit from the impedance spectroscopy. Dielectric and 

conductive properties of biological as well as their fre-

quency dependence due to the phenomena of relaxa-

tions mediums encourage this type of approach. Con-

straints related to low frequency measurements are 

also a challenge for the dielectric characterization of 

biological medium. Polarization phenomena well known 

impedance spectroscopy become very restrictive for 

applications at the cellular level. 

The geometry of a sensor is optimized for bio-

impedance measurements may induce an increase of 

the measuring range and a decrease in errors. Pejcic et 

al [1] pointed out that the optimization of the design of 

the electrodes of a sensor is one of the most crucial 

steps in the realization of a bio impedance measure-

ment device. Pejcic’s experiments were performed to 

optimize electrode designs for various applications. R. 

Igreja et al [2] have represented new analytical expres-

sions for the capacitance between the two comb elec-

trodes of a periodic interdigital capacitive sensor, based 

on conformal mapping techniques. The effect of the 

interdigitated electrode geometry (electrode width and 

spacing) and electro ceramic substrate thickness on the 

developed strain for bulk PZT substrates was modeled 

by C. Bowen et al [3]. They have described in detail the 

optimisation of interdigitated electrodes for piezoelec-

tric actuators and active fibre composites. F.Alexander 

et al [4] have optimized a interdigital sensor for imped-

ance based evaluation of HS 578T cancer cells. Wang et 

al [5] have determined the sensitivity and frequency 

characteristics of coplanar electrical cell-substrate 

impedance sensors. All these microelectrode optimiza-

tions were made for specific applications. The optimiza-

tion studies which mentioned were made based on 

arbitrary changes of the geometric parameters. The 

volume of sample in contact with the electrodes is not 

similar in each assay, and therefore unsuitable optimi-

zations. 

Additionally, Ibrahim et al [6, 7] have optimized a 

sensor microelectrodes and similar in each assay, but 

in their work was missed the optimization the length of 

electrodes. 

This paper presents a new approach of physical and 

electrical modeling system of a biological sensor. We pro-

pose a theoretical optimization of the geometrical parame-

ters of the sensor by developing total impedance equations 

and modeling equivalent circuits. Furthermore, this work 

demonstrates a theoretical calculation to determine the 

relative permittivity, thickness and capacitance parame-

ters of the double layer in the contact the electrodes with 

solutions. The electrical and physical models of an inter-

digital sensor were designed by using CoventorWare soft-

ware. In following, we have studied the influence of the 

medium’s physical properties on the frequency sensor 

response. Moreover, this research also describes the corre-

lation between the design parameters and the frequency 

behavior in coplanar impedance sensors. 

 

2. THEORETICAL ANALYSIS AND OPTIMIZA-

TION 
 

2.1 Equivalent Circuit Model 
 

An interdigital sensor is formed of two metal elec-

trodes comb-shaped, each electrode has a width W, a 

length of electrodes L and a distance between two con-

secutive electrodes S [8, 9, 10] (see Fig. 1). This sensor 

is deposited on a thin glass substrate. When an electric 

voltage U between the two electrodes is applied, this 

voltage creates an electric field between each pair of 

electrodes. 

http://jnep.sumdu.edu.ua/index.php?lang=en
http://jnep.sumdu.edu.ua/index.php?lang=uk
http://sumdu.edu.ua/
mailto:thanh-tuan.ngo@univ-lorraine.fr
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Fig. 1 – Schema of the equivalent circuit model. Csol and Rsol 

present the dielectric properties of the medium under testing, 

and Cint.p, Cint.n
 indicate the properties of the double layer 

phenomena at the contact surface of each electrode 
 

 
 

Fig. 2 – Simplified equivalent circuit model of interdigital sensor 
 

Fig. 1 shows the schematic of the sensor’s equiva-

lent circuit model, the structure of the sensor (8 inter-

digitated electrodes) and its geometrical parameters. 

The simplified equivalent circuit is adopted when such 

a cell is immersed in an electrolyte solution and is 

shown in Fig. 2.  

The different ingredients of biological impedance Z 

(which is measured by sensor) is described by the elec-

trical components (Csol and Rsol). Where Rsol 
 
represents 

the conductive properties of the solution under the 

effect of an electric field; and it is also called the re-

sistance of the electrolyte solution. This component is 

the sensitive measuring element. According to Olthuis 

[11, 12] Rsol is related to the conductivity of the medium 

σ and the cell factor Kcell, and the cell factor Kcell de-

pends entirely on the geometry of the sensor. 
 

 

cell
sol

K
R


  (2.1) 

 

 
 2

2 ( )
.

( 1) 1
cell

K k
K

L N K k


 
 (2.2) 

 

where cos cos ; 
2 2

W a
k

S W

     
     

   
with

  
W

a
S W




 is the metallization ratio (for example: 

a  0.4 means 40 % of metallization). This parameter 

has great relevance with the cut-off frequency fcut-off, as 

will be shown in the next part (optimization of the met-

allization ratio). The function K(k) is the incomplete 

elliptic integral of the first module k is cell factor (m – 1); 

 is electrical conductivity (S/m); N is number of elec-

trodes. 

The capacitance Csol represents the capacitance of 

the solution to be measured. The capacitance Cint.p 

represents the capacitance at the contact surface of 

each positive electrode with the solution to be meas-

ured and the capacitance Cint.n represents the capaci-

tance at the contact surface of a negative electrode with 

the solution to be measured. They are determined by: 
 

 int. int. 0 = =p nC C LWC  (2.3) 

 

where C0 is the capacitance per unit area  2/pF m . 

For the reason that the number of negative elec-

trode and number of positive electrode are the same 

(N / 2), therefore the equivalent capacitance at the 

negative electrode and at the positive electrode is de-

termined by: 
 

 int. int. 
2 2

p n

N N
C C   

 

Consequently, the total capacitance at the contact sur-

face is determined by: 
 

 int 0
4

erface

N
C LWC 

 
(2.4) 

 

By definition the electrical impedance quantifies the 

behavior of a medium interacting with a field or cur-

rent. The impedance Z reflects the correlation between 

the voltage at the terminals of a circuit and the current 

through the sample. In a homogeneous and isotropic 

medium linear material, the impedance is not a func-

tion of its electrical properties such as conductivity  

and permittivity ε, but also depends on the geometric 

factors of the cell [13, 14, 15] and it is described by 

expression: 
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where j is imaginary symbol; ω is angular pulsation 

(rad / s); 0 is permittivity of vacuum: 8.8542  10 – 12 

(F / m); r – is relative permittivity of the medium; Z is 

complex impedance (Ω); Y is complex admittance (S); G 

is susceptance (S); C is capacitance (F). 

On the other hand, according to the equivalent elec-

tric circuit (see Fig. 2) the total impedance can be de-

termined by: 
 

 int

1 1
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After shortened the equation (2.6), we can calculate 

the conductance G and the capacitance C: 
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2.2 Optimization of the Metallization Ratio 
 

The main objective of this work is the geometric op-

timization of the sensor structure to extend the range 

of cut-off frequency measurement. The cut-off frequen-

cy is equal to interface impedance of solution and is 

given by: 
 

 

-

int

1
  

2. . 
cut off

sol erface

f
R C

  (2.8) 

 

In this research, we use a square structure of L  L 

(the total width and the long of electrodes are the 

same). For an electrode structure with a pair of inter-

digitated electrodes number, the total width of the 

structure is given by:  L N W S S   . Because of the 

dimension of L is more bigger than S, we can make the 

following approximation [7]: 
 

  
L

L N W S N
W S

    


 (2.9) 

 

In the replacing Rsol from equation (2.1), Kcell from 

(2.2), Cinterface from (2.4) and N from (2.9), the equation 

of cut-off frequency (2.8) can be rewritten as: 
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Fig. 3 presents the relative between the cut-off fre-

quency and the metallization ratio a. The simulation 

parameters are as follows 60,7 10 ( / );pS m  

3 2
0 4,5 10 ( / ); 50; 2mm.C pF m N L   

 
 

 
 

Fig. 3 – The cut-off frequency of sensor with 50 electrodes as a 

function of the metallization ratio a 
 

As observe from Fig. 3, the minimum part of cut-off 

frequency happens in a  0.6. 

Fig. 4 demonstrates the cut-off frequency of several 

interdigitated electrodes as a function of the metalliza-

tion ratio. The simulation results are obtained by fol-

lowing parameters: 

 
 

Fig. 4 – The cut-off frequency of three different sensor electrodes 

(N  20, 40, 50) as a function of the metallization ratio a 
 

     3 2
050; 2 ; 4.5 10 ( / )N L mm C pF m   

     3 2
040; 2 ; 3.6 10 ( / )N L mm C pF m  

     3 2
020; 2 ; 1.7 10 ( / )N L mm C pF m  

 

Furthermore, Fig. 4 justifies that the minimum cut-

off frequency in whole constructions correspond to a 

value of a  0.6. According to the theoretical results, we 

will choose the metallization ratio: a  W / (S + W)  0.6 

to optimize the structure of sensor interdigitated elec-

trodes. 

 

2.3 Optimization the Length of Electrodes L 
 

Fig. 5 shows the cut-off frequency as a function of 

the length of electrodes L from formula (10). The pa-

rameters of this simulation corresponding with the 

number of electrode which equal to N  50 and the 

value of the metallization ratio (a  0.6). 
 

60,7 10 ( / );pS m  

 
 

Fig. 5 – The theoretical result of cut-off frequency as a func-

tion of the length of electrodes L for optimization of a  0.6 
 

Fig. 6 indicates the comparison between the cut-off 

frequency for different number of electrodes (N  20; 

N  40; N  50) and the length of electrodes (L). From 

Fig. 5 and Fig. 6, we can realize that variation of cut-off 

frequency was strongly decreased when L  2000 µm; 

and when L  2000 µm the cut-off frequency variations 

are almost negligible. 

As mentioned before, when measuring on biological 

samples of micrometric dimensions, it is preferable to use 

electrode structures which have the lowest impedance 

module Rsol. The contact surface of interdigital sensor is 

more bigger than the surface of the sensor with 2 or 4 
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electrodes which presented in [16], for this reason the 

interface capacities is much greater and the influence of 

polarization effect is more smaller (see Appendix).  
 

 
 

Fig. 6 – The theoretical results of cut-off frequency for differ-

ent electrodes (N) as a function of the length of electrodes L for 

optimization of a  0.6 
 

We examined the influence of the length of elec-

trodes L on the cell factor Kcell (see Fig. 7); additionally, 

the influence of electrode number N on the cell factor 

Kcell is calculated and indicated in Fig. 8. 
 

 
 

Fig. 7 – The theoretical result of cell factor Kcell as a function 

of the length of electrodes L for optimization of a  0.6 
 

Fig. 7 presents the behavior between the cell factor 

(Kcell) and the length of electrodes (L) in various type of 

electrodes (N  20; N  40; N  50). We can point out 

from Fig. 7 that the cell factor Kcell decreases with the 

length of electrodes. We can also observe a wide varia-

tion of cell factor in condition L  2000 µm, therefore 

when L  2000 µm, the change of Kcell is insignificant. 

Hence, from Fig. 5, Fig. 6 and Fig. 7, we can select 

L  2000 µm as a theoretical optimization of interdigi-

tated electrodes. 

 

2.4 Optimization of the Electrode Number N 
 

The optimal number of electrodes can be minimum 

equal to N  2 which is the lowest possible number of 

electrodes. Moreover, the sensitivity of the impedance 

measurement depends on the number of electrodes. Thus, 

the modeling allows us to study the influence of the num-

ber of electrodes in the impedance measurement.  

Fig. 8 shows the theoretical results of the cell factor 

Kcell as a function of the electrode number N from for-

mula (10) for different length of electrodes (L  1 mm, 

L  2 mm, L  3 mm. In Fig. 8, we find a decrease of the 

cell factor with increase the number of electrode. We ob-

serve a large variation in the cell factor of N in the range 

from 2 until 40 electrodes. In following,  the variations 

 
 

Fig. 8 – The various sensor cell factors Kcell with electrode 

length (L  1 mm, L  2 mm, L  3 mm) as a function of N with 

ratio a  0.6 
 

in the cell factor are very weak for N  40. For this 

purpose, we can choose N  40 as a theoretical optimi-

zation of interdigitated electrodes. 

 

3. MODELIZATION OF INTERDIGITATED 

SENSOR BY COVENTORWARE SOFTWARE 
 

We have used the simulation software (Coventor-

Ware) program to verify the theoretical results which 

achieved in previous part. This simulation permits to 

evaluate the influence of geometrical parameters of the 

interdigitated structure of the sensor and the dielectric 

properties of the medium on bioelectrical impedance 

(see Fig. 9). In this section, we describe the design of 

the physical model of the sensor loaded by a biological 

medium (for example blood). We have utilized the mod-

ule MEMS electroquasistatic harmonic response which 

is proposed by this software. It should be remarked 

that in this structure the medium must place in a ho-

mogeneous and isotropic medium liner materials. 

 

3.1 Modelization of Sensor’s Electrodes  
 

In this simulation is created the micrometer scale 

interdigital sensor structure to measure the impedance 

of samples. This sensor consists of two superimposed 

layers, the first layer forms as a glass substrate and the 

second layer arrangements like a structure of the plat-

inum electrodes. The 3D view of sensor is given in 

Fig. 9. The first layer consists of a square shape with 

dimension of 2600 µm and with a thickness of 1000 µm. 

Due to the glass substrate which is a good electrical 

insulator; we do not need to put an insulating layer 

between the electrodes and the substrate. Furthermore, 

platinum is one of the best conductor to produce the 

electrodes of interdigital sensor, platinum’s conductivi-

ty is equal to
6 19.42 10 Sm . 

In the simulation program, we have selected plati-

num mask (cover) electrodes with a thickness 1 m and 

were deposited on the substrate (layer 2). The total 

area occupied by the electrodes corresponds to that of a 

square of side L  2000 m. 

 

3.2 Modelization of the Medium 
 

As shown in Fig. 1, the components Cint.p, Cint.n, Csol 

and Rsol present the electrical properties of the medi-

um. The two components Cint.p, Cint.n describe the phe-

nomena of polarization at the boundary between the 

surface of the electrolyte and the electrodes. Moreover, 
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Fig.9 – The 3D view model of 16 electrodes type planar inter-

digitated electrode loaded by the full medium, which contains 

the double layer DL and blood medium. First layer of system 

is deposited by a glass substrate (A). Second layer consists of 

interdigitated electrodes, third layer presents the phenomena 

and properties of the double layer and fourth layer describes 

the dielectric properties of the blood medium (B) 
 

we will need two layers to represent the medium’s electri-

cal properties and interface polarization. Thus, the total 

medium of model consists of two layers as shown in Fig. 9. 

Layer 3 represents the properties of interface polarization 

electric properties (Cinterface) and layer 4 describes the elec-

trical properties of medium Rsol, Csol with a thickness of 

500 m. We have verified the model of blood as a biologi-

cal medium with the conductivity   0.7 S / m in the 

frequency range 10 Hz-1 GHz. The determination of the 

parameters at the layer 3 (relative permittivity, thickness) 

are very important to simulate the sensor. 

From formula (2.7), at low frequency the  is ap-

proximately equal to zero and the value of total capaci-

ty (C) may be calculated by the following equation: 
 

 interface
 0

limC C
 

  (3.1) 

 

By replacing C from equation (2.5) and Cinterface from 

formula (2.4), the equation (3.1) becomes: 

 

0 .
0

0 . _
0

4

4

r low frequency

cell

r low frequency

cell

N
LWC

K

C
NLWK

 

 

  
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 (3.2) 

 

From equation (3.2), we can see that the capaci-

tance per unit area C0 depends not only on the electric 
properties of medium (relative permittivity at low fre-

quency), but also sensor’s geometric.  
The blood has a relative permittivity around 5300 at 

low frequency and approximately 60 at the high fre-
quency [14, 17]. Therefore, we can determine the capac-

itance per unit area, depending on the structure of the 
sensor and medium. 

Finally we estimate the parameters at the double 

layer DL (relative permittivity r.DL  and thickness dDL) 

from equation (3.2). Fig. 10 presents the parameters of 
double layer. Table 1 indicates the results calculated the 

capacitance per unit area C0 and the parameters of dou-
ble layer. 

 

dDC

εr.DL

0

0

DL

r.DL

DL

r.DL0
0

ε

C

d

ε

d

εε
C





 
 

Fig. 10 – Parameters of double layer 

 
4. RESULTS AND DISCUSSION 

 

The main objective of this simulation is the verifica-

tion of the analytical results from the theoretical devel-
opment of equations relating the geometric parameters 

of the sensor and cut-off frequencies. We also study the 
influence of the metallization ratio on the impedance 

spectroscopy (IS).  

A sinusoidal signal (1 volt) applied between termi-
nals of interdigitated electrodes and a frequency range 
from 10 Hz to 1 GHz. We used the Manhattan mesh for 

this physical model, with linear elements sized 10 m in 
the three directions (X, Y, Z). The model is presented in 

Fig. 11. 
The electrical impedance Z is defined from the equa-

tion (2.6) by the data capacitance C and susceptance G 
(which are given by the CoventorWare software). As 

shown in Fig. 12, we present the simulation results of 

the impedance as function of frequency for several sensor 

types (a  0.3; a  0.6 and a  0.8). The obtained results 
which presented in Fig. 12 and Table 2 demonstrate that 

the sensor type two “optimized” has the lowest cut-off 
frequency. 

 

Table 1 – The simulation parameters of the interdigital sensor 
 

Sensor L 

(mm) 

N W 

(m) 

S 

(m) 

a Kcell  

(m – 1) 

C0 

(pF / m2) 
.r DL  DLd (m) 

1 2 40 15 35 0.3 35.8 4.37  10 – 3 493.5 1 

2 2 40 30 20 0.6 21.8 3.6  10 – 3 405 1 

3 2 40 40 10 0.8 15.1 3.9  10 – 3 438.74 1 
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Fig. 11 – The schematic of sensor and Manhattan mesh model 
 

 
 

Fig. 12 – The relative between the electrical impedance and 

frequency range (Hz) for three different sensors 
 

Table 2 – The geometric parameters of the sensor and cut-off 

frequencies of sensors 
 

Sensor L 

(mm) 

N W 

(µm) 

S 

(µm) 

a 
-cut offf   

(Hz) 

1 2 40 15 35 0.3 7  106 

2 2 40 30 20 0.6 2.5  106 

3 2 40 40 10 0.8 4  106 
 

 
 

Fig. 13 – Relative permittivity as a function of the frequency 
 

The relative permittivity rof the medium is calcu-

lated from the data C obtained by the Coventor soft-

ware and formula (2.5). Fig. 13 shows the relative per-

mittivity as a function of the frequency. In this figure, 

the curve of the relative permittivity of sensor two 

(N  40, W  15 m, S  35 m, L  2 mm) is more coin-

cide with the curve from [17]. The result of blood’s rela-

tive permittivity is approximately equal to 5300 at low 

frequency and 55 at the high frequency. It justifies that 

the optimization theory is correct. 
 

5. CONCLUSION 
 

This paper presents a physical model of interdigitated 

sensor in the frequency range 10 Hz-1 GHz. A theoretical 

approach is proposed to optimize the use of the sensor for 

bio impedance spectroscopy. 

The results of analytical and numerical simulation 

demonstrate the advantage of the optimization to extend 

the usable bandwidth frequency of the sensor. By analyz-

ing the equivalent circuit model we conclude that the 

capacitance per unit area depends on the medium electri-

cal properties and sensor’s geometric parameter.  

The determination of capacity per unit area permits 

us to achieve the parameters of double layer. The simula-

tion results present that the criteria which used to opti-

mize of sensor are correct. 

Finally, this paper presents a comparative approach 

for simulation of biological sensor modeling using Coven-

torWare software. Three dimensional interdigital sensor 

simulation techniques were done to analyze the influence 

of the physical properties of the medium and the imped-

ance response by optimizing the geometry of sensor. 

 

APPENDIX  
 

The polarization appears at the contact surface be-

tween the electrodes and the solutions, it is an error 

cause in the measurement process.  

The polarization impedance may be determined by 

the following expression: 
 

 
interface

1
pZ

j C
   

 

In the reason to reduce the influence of polarization 

in the measurement, interdigital sensors must remain 

the maximum capacitance value interface. 

By replacing C0 from equation (3.2), the equation 

(2.4) becomes: 
 

 
0

interface

. low frequency

cell

C
K

 
   

 

From this formula, we can conclude that the sensor 

which has smaller cell factor Kcell, it will be reduced the 

maximum polarization. Thus, the optimization of the 

cell factor Kcell is necessary. 
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