
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ 

Vol. 5 No 4, 04051(3pp) (2013) Том 5 № 4, 04051(3cc) (2013) 

 

 

2077-6772/2013/5(4)04051(3) 04051-1  2013 Sumy State University 

Optical Properties of MgF2 / MgF2 / Glass and MgF2 / TiO2 / Glass  
 

S. Ghahramani*, H. Kangarlau† 

 

Faculty of science, Urmia branch, Islamic Azad University, Urmia, Iran 

 
(Received 09 June 2013; revised manuscript received 08 July 2013; published online 31 January 2014) 

 
MgF2 thin films by thickness of 93 nm were deposited on MgF2 / glass and TiO2 / glass thin layers by 

resistance evaporation method under ultra-high vacuum (UHV) conditions, rotating pre layer for sample 

one and normal deposition for second one. Optical properties were measured via spectrophotometer in 

spectral range of 300-1100 nm wave length. The optical constants such as, real part of refractive index (n), 

imaginary part of refractive index (k), real and imaginary parts of dielectric function ε1, ε2 respectively and 

absorption coefficient ( ), were obtained from Kramers-Kronig analysis of reflectivity curves. Band-gap en-

ergy was also estimated for these films. 
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1. INTRODUCTION 
 

Thin films producing technologies are developing 

rapidly and nowadays Nano techniques are using in 

producing them. Producing diodes and transistors was 

the first stage of using thin films. Most of modern and 

complex optical, electrical and electronic devices are 

covered by thin films. 

Thin films mechanical properties are much depend-

ent on microstructure and chemical composition, and so 

it depends on deposition technology. Conditions of thin 

films before deposition, deposition conditions and coat-

ings are important [1, 2].  

It is clear that the use of magnesium fluoride as a 

support for different catalytic materials, transition 

metal oxides like MoO3 [3], V2O5 [4], WO3 [5] and binary 

systems such as CuO and Cr2O3 [6, 7] more over for 

metallic catalysts like ruthenium ones [8, 9] is appeal-

ing. MgF2 is a nonconductor with a wide band gap and 

has good thermal stability and considerable hardness.  

Magnesium fluoride (MgF2) is an optical material 

which stands cost-competitive methods transparent in 

a broad band of photon energies [10]. MgF2 and LiF2 

are two materials with property of transmit ion in the 

vacuum ultraviolet range and applications in optical 

windows, lenses, prisms. The MgF2 crystal is used in 

the electrolysis of aluminum ore and anti-reflective 

coatings [11], for which the surface structure and quali-

ty are important. 

TiO2 films under ultraviolet light act as antibacteri-

al, deodorizing and self-cleaning (Matsubara et al 1995; 

Negishi et al. 1995; Kikushi et al. 1997). Conversely, 

the band-gap energy of TiO2 is ~ 32 eV, so, UV illumi-

nation is essential to photo activate this semiconductor 

which is a weakness of it. 

A number of techniques used to prepare films based 

on TiO2 like sputtering, spray pyrolysis (Yanagi et al. 

1997), sol-gel processing (Yoko et al. 1991) and chemi-

cal vapour deposition (CVD) (Lee et al. 1994; Schvisky 

et al. 2000).  

For those applications these processes needs the 

and expensive devices for film deposition Titanium di-

oxide (TiO2) has widely been studied as a good form 

material for solar cell, water splitting, and Photo cata-

lysts [12-16]. These days attempts to find a material for 

improving performance, impregnation of guest ele-

ments in transition of metal oxides and surface revision 

of oxides is under performance [13, 17-23]. Enache et 

al. [19] used TiO2 as a support for Au / Pd catalyst, and 

applied in oxidation of alcohols with remarkable re-

sults. Kim et al. [22] made a double (undoped TiO2 and 

Cr-doped TiO2) layer solar cell, and in comparison to 

TiO2 single layer they got an improvement in efficiency. 

In this paper we calculate optical properties of mul-

tilayers semiconductors such as MgF2 / MgF2 / glass 

and MgF2 / TiO2 / glass by Kramers-Kronig method  

 

2. EXPERIMENTAL DETAILS 
 

Magnesium fluoride and Titanium dioxide thin 

films were deposited on glass substrates 

(18  18  1 mm cut from microscope slide) by resistive 

evaporation from Molybdenum and Tungsten boats for 

MgF2 and TiO2 respectively at room temperature and 

high vacuum conditions. The purity of Magnesium fluo-

ride powder was 96 % and purity of TiO2 powder was 

98%. An ETS 160 (Vacuum Evaporation System) coat-

ing plant with a base pressure of ~ 10 – 6 mbar was 

used. Prior to deposition, all glass substrates were ul-

trasonically cleaned in heated acetone first and then in 

ethanol.  The substrate holder was a disk of 36.5 cm in 

diameter with adjustable height up to 50 cm and also 

adjustable holders for placing any kind of substrates.  

The distance between the center of the evaporation 

boat and the center of the substrate was 40 cm. Thick-

ness of layers were determined by quartz crystal mi-

crobalance technique (d  90 nm for MgF2 and 

d  71 nm for TiO2 layers). Other deposition conditions 

such as deposition rate, vacuum pressure, and sub-

strate temperature was same in all tests. Second step 

of experiments were as follow: for sample one, we used 

rotating MgF2 / glass as substrate and we coat MgF2 on 
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substrate that tends to heterogeneous 

MgF2 / MgF2 / glass layer. For sample two, MgF2 pow-

der with normal deposition angle coated on TiO2 / glass 

substrate and tends to four phase MgF2 / TiO2 / glass 

thin layer. Transmittance of the films was measured by 

using VIS spectrophotometer (Hitachi U-3310) instru-

ment. The spect of layers were in the range of 300-

1100 nm wave length (VIS), and for using Kramers-

Kronig relations [24], we extrapolated of reflectivity 

curves with bulk standard samples [25].The optical 

properties such as n, k, ε1, ε2,  and Band-gap energy 

were obtained. There was a good agreement between 

them. Table 1 shows details of layers produced in this 

work. 
 

Table 1 – Detail of layers produced 
 

Sample Multilayers Vacuum 

presure 

(torr) 

Thick-

ness (nm) 

Deposi-

tion rate 

(A˚/S) 

One   MgF2 / MgF2 / 

glass 

 10 – 6 93 and 93 0.7 and 

0.7 

two MgF2 / TiO2 /  

glass 

 10 – 6 93 and 72 0.7 and 

0.2 

 

3. RESULTS AND DISCUSSION 
 

Positions (a) and (b) in figure 1are showing transmit-

tance and reflectance curves of layers in visible light 

range (300-1100 nm) respectively. As it can be seen re-

flectance and transmittance are different for layers. 
 

 
 

 
 

Fig. 1 – Transmittance and Reflectance curves of 

MgF2 / MgF2 / glass and MgF2 / TiO2 / glass: (a) Transmittance 

curve, and (b) Reflectance curve 

The real and imaginary parts of reflective indices 

are shown in figures 2a and 2 b respectively. Real part 

of reflective index for sample one is a wide peek begin 

from 1.4 eV and ends 3.4 eV. Real part of refractive 

index for sample two, begins from a minimum at 1.4 eV 

and reach to a maximum at 3.8 eV. By changing mate-

rial of last layer n, completely changes. 
 

 
 

 
 

Fig. 2 – Real and Imaginary parts of reflective indices: (a) 

Real part, n, and (b) Imaginary part, k 
 

Imaginary parts of refractive indices have same 

trend for both samples (one and two). There is a mini-

mum at 3.3 eV for sample one and this minimum shifts 

to 3.8 eV for sample two.  

Figures 3a and 3b show real and imaginary parts of 

dielectric constants respectively ε1 and ε2 for samples 

are completely different. In general second sample 

shows higher dielectric property. 
 

 

a 

b 
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a 
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Fig. 3 – Real and Imaginary parts of dielectric constant: (a) 

Real part, ε1, and (b) Imaginary part, ε2 

 

 
 

Fig. 4 – Absorption coefficient of MgF2 / MgF2 / glass and 

MgF2 / TiO2 / glass thin layers 
 

Figure 4 shows absorption coefficient for both sam-

ples (one and two). Sample two in general shows higher 

absorption coefficient. That is because of formation 

more void on sample one by rotating substrate and of 

course TiO2 had an ideal deposition angle that tends to 

less voids on layer. 

Figure 5 shows band gap values for sample one and 

two, the value of band gap is 3.8 eV for sample one and 

3.9 eV for sample two, that is in agreement with dielec-

tric constants and other optical properties. 
 

 
 

Fig. 5 – Band Gap of MgF2 / MgF2 / glass and 

MgF2 / TiO2 / glass thin layers 

 

4. CONCLUSION 
 

MgF2 / MgF2 / glass and MgF2 / TiO2 / glass multi 

layers were produced in this work at room temperature 

and HV conditions. 

Reflectivity and transmittance of layers are com-

pletely different. 

By using Kramers-Kronig relations on reflectivity 

curves optical parameters calculated 

MgF2 / TiO2 / glass layer in general showed higher die-

lectric property. 

That is because of gettering property of Ti atoms. 

Band gap is about 3.9 eV for this layer. 

For MgF2 / MgF2 glass band gap is about 3.8 eV that 

is much more less than a bulk MgF2 (10.8 eV) almost 

insulator, so by Nano metric deposition we can produce 

semiconductors of MgF2. 
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