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In this presentation we synthesized SnO2 thin film by sol-gel process. Starting from Tin(II) chloride as 

precursor and methanol as solvent the film was deposited on glass and quartz substrate by novel dip  
coating method. Structural and morphological analysis was carried out by X- Ray diffraction (XRD) mea-

surement and Scanning electron microscopy (SEM). Optical characteristics were analyzed from the study 
of transmission spectrum data obtained by UV / VIS Spectrophotometer. It is observed that the transmis-

sion and grain size were more in case of quartz than glass substrate whereas the band gap was more in 
glass than quartz substrate. From XRD measurement it was confirmed the tetragonal structure of SnO2. 

EDS analysis depicts the weight percentage of Sn and O as 78.71 % and 21.29 % respectively and also con-
firms the purity of the film. From the study we concluded that the structural configuration changed a little 

with change in substrates at same conditions and quartz is the preferable substrate than glass. 
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1. INTRODUCTION 
 

Since last two decades nanotechnology has been 

chosen as top priority among science and technology 

due to its adherence with almost all the branches of 

science. These days the study and applications of thin 

film technology is concurred entirely the research 

community. The current paper which describes the 

synthesis and study of characteristics of Tin Oxide 

(SnO2) is really more interesting for researchers due 

to its vast applications. Due to the properties like re-

flectivity, transparency, low electrical sheet resistance 

etc., tin oxide thin films has immense applications 

such as gas sensing material for gas sensors devices 

[1-3], in transistors [4], photovoltaic cell [5], transpar-

ent conductive electrode for solar cells[6-7], photo-

chemical and photoconductive devices in liquid crystal 

display [8] etc. Till today so many methods were 

adopted to synthesize doped or un-doped tin oxide 

films such as Thermal Evaporation [9-10], Chemical 

Vapor Deposition [11-12], R.F. Magnetron Co- sput-

tering [13], Laser Pulse Evaporation [14-15], Spray 

Pyrolysis [16-18], ultrasonic spray pyrolysis [19] and 

sol-gel [20-22]. Above all Sol-gel method gives more 

attention due to many advantages like less processing 

cost, simple experimental arrangement, easy control 

on film thickness, greater homogeneity and more pu-

rity etc. In addition to above advantages Sol-gel tech-

nique controls the film morphology and particle size 

which is more useful for sensors. 

The rehabilitated curiosity of researchers in SnO2 

is due to its properties like reflectivity, transparency, 

low electrical sheet resistance, hardness and chemi-

cally stability. Tin Oxide crystallizes tetragonal rutile 

structure with unit cell parameters a  b  4.737 Å 

and c  3.186 Å. It is a n-type semiconductor having 

high band gap energy (≈ 3.6 eV) [23] and is more 

transparent in the region of visible spectrum due to 

high band gap, having high electrical conductivity due 

to free electrons in oxygen vacancy holes.  

In this study we visualized dip coating method. 

Starting from Tin (II) Chloride, methanol as solvent 

and glacial acetic acid as chelating agent a transpar-

ent solution was prepared and SnO2 thin film was 

synthesized on a glass and quartz substrate by sol-gel 

dip coating technique. Our main objective in this work 

was to prepare SnO2 thin films by the sol-gel method 

on glass and quartz substrate and to investigate the 

influence of the nature of the substrate on the optical 

and morphological properties.  

Transmission spectrum was studied with the help 

of ELICO UV / VIS spectrophotometer (Model – SL-

159) in the wavelength range 300 nm to 1000 nm. 

From the transmission graph optical properties were 

analyzed and  it was concluded that for nearly same 

thickness and at same conditions transmission was  

more in case of quartz than glass substrate and also 

band gap was less in case of quartz substrate. Struc-

tural analysis of the films was carried out by XRD 

measurement using SIEMENS Diffractometer (Model 

D5000). The study confirms tetragonal rutile struc-

ture of SnO2. Surface morphology was examined from 

SEM micrographs by using Scanning Electron micro-

scope (Model- Philips XL 30). From both XRD and 

SEM it was observed that the grain size and strain of 

SnO2 thin film was more in the case of quartz sub-

strate than glass substrate. EDS analysis substanti-

ated the purity of the SnO2 thin film. 

 

2. EXPERIMENTAL PROCEDURE 
 

A clear and homogeneous solution was prepared by 

dissolving 1 gm of anhydrous Tin (II) chloride (SnCl2) 

in 50 ml of methanol (CH3OH) with 1 gm glacial ace-

tic acid (CH3COOH) and stirred by a stirrer for 

45 minutes at NTP. Before coating on the substrates 

both the glass and quartz substrates were thoroughly 

cleaned with cleaning liquid soap and then with ace-

tone to remove organic particles on the surface and 
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then washed with distilled water. To prevent local 

hydrolysis the substrates were then soaked with TEA 

diluted isopropyle alcohol for 10 minutes and then 

dried. Then the substrates were dipped in the pre-

pared solution by hand and withdrawn [24]. The coat-

ed glass substrates were dried at 150 C in a muffler 

furnace for 1 hr and then heat treated at 300 C for 

about 15 minutes. The above procedure was repeated 

for a number of times to get the desired thickness. In 

this investigation we repeated the procedure for six 

times to get a thickness of 645-650 nm. After getting 

the required thickness finally heat treatment was 

carried out on each substrate at 500 C for one and 

half hour in a muffler furnace in air. 

Optical characterization was studied from trans-

mission % vs. wavelength curve which was plotted 

from the data obtained from transmission spectrum 

analysis of the film by ELICO UV / VIS spectropho-

tometer Model – SL-159 in the wavelength range 

300 nm to 1000 nm. The refractive index and the 

thickness of the film were calculated using the formu-

la [25] 
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Where n and d are the refractive index and thick-

ness of the thin film  refractive index of the sub-

strate, Tu and Tl be the transmission maximum at 

upper envelop and transmission minimum at lower 

envelop for a particular wavelength , n1 and n2 be 

the refractive index of the thin film at maxima(for 

wave length 1) and corresponding minima (for wave 

length 2) where phase difference is . The optical 

band gap was obtained from the  plot of ( h )1/2  vs. h  

in SnO2 thin film deposited on quartz and glass sub-

strate. It has been observed the band gap were 3.7 eV 

and 3.62 eV in case SnO2 thin film deposited on glass 

substrate and quartz substrate, respectively. XRD 

measurement was carried out by using SIEMENS 

Diffractometer and study of morphology was done by 

Scanning Electron microscope. 

 

3. RESULTS AND DISCUSSION 
 

3.1 Optical Measurement 
 

Optical characteristics of SnO2 thin films on glass 

and quartz substrates were studied from transmis-

sion % vs. wavelength curve in the wavelength range 

300 nm to 1000 nm. From Fig. 1 it was clear that the 

surface quality and homogeneity of the thin film were 

brilliant and this substantiates that SnO2 thin film 

reveals semiconducting properties as it was established 

by Nowak that the pure semiconducting compounds 

have a sharp absorption edge [26]. In the visible region 

of the spectra, the transmission of SnO2 thin film was 

very high, due to the fact that the reflectivity is low 

and there is less absorption due to excitation of elec-

trons from the valence band to conduction band [27]. 
 

 
 

Fig. 1 – T % vs.  in mm in the wavelength range 300 nm-

1000 nm.

  
 

From Fig. 1 it was noticeable that transmittance 

was more in case of quartz substrate than glass sub-

strate. It may be due to high porosity and larger grain 

size and less absorption in the film deposited on quartz 

substrate. It was also obvious that transmission values 

were more than 0.80 at wave length greater than 

450 nm in both the cases. 

From the Transmission vs. wavelength graph aver-

age refractive index and thickness were calculated and 

the values were mentioned in Table 1. 
 

Table 1 – Film thickness and refractive index of the film 
 

 

Looking at the data presented in Table 1, one can 

wind up that the refractive index of SnO2 thin film de-

posited on quartz substrate was more than the refrac-

tive index of SnO2 thin film deposited on glass sub-

strate at same conditions which may be due to little 

porosity in the film grown on quartz substrate. 

The values of the refractive index n for SnO2, thin films 

as calculated were plotted against the wavelength in 

Fig. 2. It was observed from this figure that the refrac-

tive index n decreases with the increase in the wave-

length  and refractive index of SnO2 thin film was 

more in case of quartz substrate than glass substrate. 
The higher value of refractive index may probably due to the 

increase of inhomogenity and surface roughness of the films 

due to larger grain size in case of quartz substrate. 

Substrate 
Film thickness 

(nm) 

Avg. Refrac-

tive Index (n) 

Glass 645.98 2.07 

Quartz 649.31 2.13 
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Fig. 2 – Refractive Index (n) vs. Wavelength ( ) in nm 
 

 
 

Fig. 3 – 
1 2( )h  vs. h  for SnO2 films deposited on different 

substrate 
 

The absorption coefficient ( ) was calculated from 

the expression [28]. 
 

 
1 1

 ln
d T

  

 

where d thickness of the film and T optical trans-

mission. The calculated absorption co-efficient was 

about 104 cm – 1 for both the cases. The calculated ab-

sorption coefficient data was fitted to the relation given 

by Davis and Mott [29] as 
 

 h   A(E – Eg)2  

 

where A a constant which was almost independent of 

the chemical composition of the semiconductor, E  h  

the photon energy Eg the optical band gap. The Fig. 3 

shows the plot of ( h )1/2 vs. h  in SnO2 thin film de-

posited on quartz and glass substrate. It has been ob-

served that the graph was linear over a wide range of 

photon energies which was due to direct type of transi-

tion. When the linear portion was extrapolated to the 

h  axis the intercept gives the band gap which was 

3.7 eV and 3.62 eV in case SnO2 thin film deposited on 

glass substrate and quartz substrate respectively. The 

reported band gap values for SnO2 thin film were be-

tween 3.3 and 4.0 eV and for single crystal 3.6 eV [30]. 

The band gap of SnO2 thin film deposited on quartz 

substrate was less than the band gap of SnO2 thin film 

deposited on glass substrate due to growth of grain and 

improvement of the degree of crystallization. 

 

3.2 Structural Analysis 
 

Fig. 4 shows the XRD pattern of SnO2 thin film de-

posited on quartz and glass substrates. XRD measure-

ment was carried out by Siemens Diffractometer Mod-

el D-5000 using CuK  having wavelength   1.540 Å 

radiation with a diffraction angle 10  to 70 . 

XRD pattern indicates that in both the cases well 

defined sharp diffraction peaks were seen nearly at 

same angle of 2θ which may be considered to be the 

crystalline tetragonal rutile structure of SnO2 (JCPDS 

Card No. 88-0287). XRD peaks were very narrow and 

sharp which shows higher crystalline quality of the 

SnO2 film. The (101) peak has the largest intensity in 

both the cases, so it may be believed the preferential 

growth along direction (101) hence Sn forms an inter-

stial bond with oxygen and exist as rutile SnO2. The 

figure depicts a significant increase in the intensity of 

the X-ray diffraction peaks in case of quartz substrate 

this may be due to additional nucleation centers for the 

SnO2 growth due to which grain size also increased. 

The well-defined peaks which match the standard 

interplanar spacing were shown in the Table 2. 
 

Table 2 – hkl value of XRD 
 

2θ in degree hkl (Plane) 

26.6 110 

33.9 101 

38 200 

39 111 

51.8 211 

54.8 220 

61.9 310 
 

XRD spectrum was analyzed with Gaussian func-

tion where FWHM was determined. By using Debye-

Scherrer formula 
 

 0.94  cosD ,  
 

where D mean grain size,  – FWHM (Full width and 

half maxima) of the observed peak,  – wavelength of 

X-Ray used for diffraction, θ – angle of diffraction.  

Using the above formula the average grain size of the 

deposited film was calculated as 48.54 and 51.27 nm 

for the film grown on glass and quartz substrate. This 

difference may be probably due to the presence of 

strains distributed unevenly in the film.  

Strain of SnO2 thin films on glass and quartz sub-

strates, was calculated by a formula [31]. From calcu-

lation it was found that the value of strain of SnO2 

film deposited on glass and quartz substrate were 

0.0097 and 0.0114, respectively. Thus strain on quartz 

was more due to larger grain size and from the mor-

phology study it is believed that mechanical strains 

are unevenly distributed over the film thickness. 
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Fig. 4 – XRD Pattern of SnO2 thin film deposited on glass 

and quartz substrate 

 

3.3 Morphological Analysis 
 

SEM images of SnO2 thin film deposited on glass 

and quartz substrates were shown in Fig. 5. SEM 

measurement was carried out by Scanning Electron 

Microscope Model- Philips XL-30. SEM micrograph 

shows agglomeration of the grain particles in both the 

cases with larger grain size in case of quartz sub-

strate. From the SEM images it was clear that micro-

structural properties as well as grain size changes 

when substrates were different at same conditions. 

SEM micrograph of thin film contains domes like 

structure and the size of the domes was more in case 

of quartz crystal. This dome like structures may be 

believed as the top surfaces of the grains of the film. 

In case of quartz more agglomeration of grains ob-

served. Since the size of domes was more in case of 

quartz substrate so it may be concluded that the grain 

size of the film deposited on quartz was bigger than 

the grain size of the film deposited on glass substrate.  

From the data of XRD and SEM measurement for 

grain size we experienced a significant discrepancy in 

grain size calculated by XRD and SEM methods. The 

grain size calculated by XRD method was smaller 

than that estimated by using SEM images. It was  

 

 
 

Fig. 5 – SEM images of SnO2 film for quartz and glass sub-

strate 
 

observed that for glass substrate the grain size 

50.12nm in SEM measurement and 47.34nm in case 

of XRD measurement where as for quartz substrate 

the grain size is 52.45 nm in SEM measurement and 

51.27 nm in XRD measurement.  

 

3.4 Energy Dispersive Spectroscopy Analysis 
 

The quantitative analysis of the films was carried 

out by Energy Dispersive Spectroscopy and the spec-

trum obtained shown in the Fig. 6. From the spectrum 

it is clear that only Sn and O are present in the film 

which confirms the purity of SnO2 thin film. 
 

 
 

Fig. 6 – EDS spectrum of SnO2 thin film 
 

Stoichiometrically the weight percentage of Sn and O 

should be 78.77 % and 21.23 %, respectively. But we 

observed percentage of Sn and O in the film grown on 

quartz substrate as 78.49 % and 21.51 % respectively 

and for glass substrate it is 78.71 % and 21.29 %, re-

spectively. 

 

4. CONCLUSION 
 

By sol-gel (dip coating) method SnO2 thin films 

were synthesized on glass and quartz substrate. Com-

paring the results obtained we brought to a close that 

nature of substrate influences on film morphology as 

well as grain size. From XRD study it was concluded 

that the structural configuration changes with change 

in substrates. XRD study wraps up that grain size of 

the SnO2 thin film deposited on quartz substrate was 

more than deposited on glass substrate. Optical charac-

teristics of the thin film were determined from the 

transmittance spectra in the UV-VIS region using the 

envelop method. It was observed that transmittance 

was more in case of quartz substrate and band gap was 

more in case of glass substrate and transmission value 

were more than 0.80 at wave length greater than 

450 nm in both the cases. XRD result confirms that the 
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product was tetragonal rutile structure. From SEM 

images it was concluded that the surface roughness of 

the film in case of quartz substrate was more. EDS 

result confirms the purity of the SnO2 thin film. As 

sensing of gas by thin film will be more in case of more 

surface roughness, the obtained experimental results 

can be suitably used for gas sensors.  
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