
JOURNAL OF NANO- AND ELECTRONIC PHYSICS ЖУРНАЛ НАНО- ТА ЕЛЕКТРОННОЇ ФІЗИКИ
Vol. 5 No 3, 03035(4pp) (2013) Том 5 № 3, 03035(4cc) (2013)

2077-6772/2013/5(3)03035(4) 03035-1 Ó 2013 Sumy State University

Generalized Fokker-Planck Equation for the Modified Landau-Lifshitz Equation
with Poisson White Noise

S.I. Denisov, O.O. Bondar

Sumy State University, 2, Rimsky Korsakov Str., 40007 Sumy, Ukraine

(Received 04 February 2013; published online 17 October 2013)

Using the modified stochastic Landau-Lifshitz equation driven by Poisson white noise, we derive the
generalized Fokker-Planck equation for the probability density function of the nanoparticle magnetic mo-
ment. In our calculations we employ the Ito interpretation of stochastic equations and take into account
the fact that the magnetic moment direction can be changed by this noise instantaneously. The analysis of
the stationary solution of the generalized Fokker-Planck equation shows that the distribution of the free
magnetic moment in Poisson white noise is not uniform. This feature of the stationary distribution arises
from using the Ito interpretation of the stochastic Landau-Lifshitz equation.

Keywords: Stochastic Landau-Lifshitz equation, Poisson white noise, Probability density function, Gener-
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1. INTRODUCTION

Magnetic nanoparticles have attracted great interest
during the last years of specialists studying the nano-
materials and their physical properties. Such interest
is conditioned by both their wide use in many fields of
science and technology and perspectives of their possible
applications [1-3]. For example, magnetic nanoparticles
of iron oxides are used in waste separation techniques,
targeted drug delivery, hypothermic treatment of cancer
cells, etc. On the other hand, investigation of the mag-
netic properties of nanomaterials allows to significantly
broaden the field of their application and effectively use
in magnetic information recording, sensors on the giant
magnetoresistance effect, magnetic locks, ferrofluids, etc.

Because of external and internal fluctuations which
are an integral part of real systems, dynamics of the na-
noparticle magnetic moment is random. In many cases
to describe the magnetic moment behavior one can use
the stochastic Landau-Lifshitz equation, in which inf-
luence of fluctuations is taken into account by inclusion
into effective magnetic field of an additional term with
specified statistical properties. When investigating the
role of thermal fluctuations, this term is usually appro-
ximated by the time-dependent random vector, whose
components are independent Gaussian white noises. In
this approximation, dynamics of the magnetic moment
is Marcovian, and probability density of some direction
of the magnetic moment satisfies the differential Fok-
ker-Planck equation [4-6]. In particular, features of the
magnetic relaxation in two-dimensional ensembles of
ferromagnetic nanoparticles with magnetodipole inter-
action [7, 8], properties of the induced magnetization of
systems of non-interacting and interacting nanoparticles
in a circularly-polarized magnetic field [9-11], and de-
pendence of the mean time between sequential reorien-
tations of the magnetic moment on the characteristics of
this field [12] are studied within the give approach.

Due to the central limiting theorem [13], approxima-
tion of the Gaussian white noise is quite justified if the
corresponding random process generating this noise can
be interpreted as a result of a large number of random

factors, none of which is dominant. In the opposite case,
non-Gaussian white noise appropriate for the description
of a specific situation can be used in the modeling of
random  dynamics  of  the  magnetic  moment.  Levi  and
Poisson white noises are of particular interest among
the variety of such noises. Since the first noise is gen-
erated by stable Levi process, its significance results
from the generalized central limiting theorem, accord-
ing to which only stable distributions have a domain of
attraction [14]. On the other hand, Poisson white noise
representing a random sequence of delta pulses dis-
tributed by the Poisson law is a suitable model for the
description of system dynamics including the dynamics
of the nanoparticle magnetic moments subjected to
strong but short-term impacts.

The aim of the present work is to derive the equation
for the probability density of the magnetic moment of a
single-domain nanoparticle in a random magnetic field,
whose components have characteristics of the Poisson
white noise. Since the dynamics of magnetic moment is
found to be rather complex, we have used the modified
Landau-Lifshitz equation for the solution of this problem.

2. MODEL AND INITIAL EQUATIONS

We consider the simplest model of a single-domain
ferromagnetic nanoparticle which is characterized by
the magnetic moment m = m(t) with m = |m| = const.
In this case, random dynamics of the vector m can be
described by the stochastic Landau-Lifshitz equation

ௗܕ
ௗ௧
= ×ܕߛ− (۶eff (ܐ+ − ఈఊ

௠
×ܕ (1) ,(۶eff×ܕ)

where γ(>0) is the gyromagnetic ratio; α(>0)  is  the
damping parameter; sign ´ denotes the vector product;
Heff = – ¶W/¶m is the effective magnetic field acting on
the magnetic moment; W is the nanoparticle magnetic
energy, and h = h(t)  is  the  random  magnetic  field.  In-
troducing the dimensionless time t = gH0t and energy
E = W/mH0 (H0 is  the  characteristic  magnetic  field  as
which one can choose the anisotropy field), equation (1)
in spherical coordinates is reduced to the system of two
equations
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ߠ̇ = ଵ݂ +߰ଵ ,						߮̇ = ଶ݂ + ଵ
ୱ୧୬ఏ

߰ଶ (2)

for polar ߠ = and azimuth (ݐ)ߠ ߮ = angles (ݐ)߮  of  the
vector m. Here dot above and ߠ ߮ denotes differentia-
tion with respect to the dimensionless time,

ଵ݂ = ଵ݂(ߠ, ߮, ߬) = −ቀߙ డ
డఏ

+ ଵ
ୱ୧୬ ఏ

డ
డఝ
ቁܧ,

ଶ݂ = ଶ݂(ߠ, ߮, ߬) = ଵ
ୱ୧୬ ఏ

ቀ డ
డఏ
− ఈ

ୱ୧୬ఏ
డ
డఝ
ቁ ,ܧ

(3)

and values ߰ଵ,ଶ = ߰ଵ,ଶ(ߠ,߮, ߬) are expressed through the
dimensionless components ݃఑ = ℎ఑(߬)/ܪ଴(ߢ = ,ݔ ,ݕ of (ݖ
the random magnetic field :as follows	ܐ

߰ଵ = −sin߮݃௫ + cos߮݃௬ ,

߰ଶ = sinߠ ݃௭ − cosߠ (cos߮ ݃௫ + sin߮݃௬).
(4)

In the sequel, we will approximate components ݃఑ by
white noises with specified statistical characteristics.
Since, according to (4), these noises are multiplicative
ones, the system of stochastic equations (2) should be
thoroughly defined. To this end, we will re-write (2) in
the differential form and use the Ito interpretation [15]
(see also [5, 6]) of this system. As a result, we have

ߠ݀ = ଵ݂݀߬ + ଵߟ݀ ,						݀߮ = ଶ݂݀߬ + ଵ
ୱ୧୬ఏ

,ଶߟ݀ (5)

where

ଵߟ݀ = −sin߮݀ߞ௫ + cos߮ ௬ߞ݀ ,

ଶߟ݀ = sinߠ ௭ߞ݀ − cosߠ ൫cos߮݀ߞ௫ + sin߮ ,௬൯ߞ݀
 (6)

఑ߞ݀ = (߬)఑ߞ݀ = ∫ ݀߬ᇱ݃఑(߬ᇱ)		ఛାௗఛ
ఛ with ߬ = ݇݀߬	(݇ = 0.1, … ).

As for random functions ఑(߬) itߞ݀  is  assumed  that  at
different and/or ߢ ݇ they are independent, equally dis-
tributed, and have zero mean values. This means that
conditions 〈(߬)఑ߞ݀〉 = 0, 〈఑ᇲ(߬ᇱ)ߞ݀(߬)఑ߞ݀〉 = ߢ)	0 ≠ /ᇱ andߢ
or ߬ ≠ ߬ᇱ), 〈ଶ[(߬)௫ߞ݀]〉 = 〈ଶ[(߬)௬ߞ݀]〉 = where ,〈ଶ[(߬)௭ߞ݀]〉
angular brackets denote averaging over realizations of
random functions .఑(߬),  should holdߞ݀

Using these mean values and formulas (6), one can
show that 〈(߬)௣ߟ݀〉 = ݌)	0 = 1,2), 〈௣ᇲ(߬ᇱ)ߟ݀(߬)௣ߟ݀〉 = 0
݌) ≠ ᇱ and/or݌ ߬ ≠ ߬ᇱ) and 〈ଶ[(߬)௣ߟ݀]〉 = ,Thus .〈ଶ[(߬)௫ߞ݀]〉
random functions ఑(߬) andߞ݀ ௣(߬) have zero meanߟ݀
values and equal correlation functions. In this connec-
tion it is reasonable to consider the modified system of
equations (5) in which increments ௣ areߟ݀  induced  by
white noises -௣(߬) with the same statistical characterisߦ
tics that ݃఑(߬) does. In other words, we represent ௣ inߟ݀
the form of

௣ߟ݀ = ∫ ݀߬ᇱߦ௣(߬ᇱ)
ఛାௗఛ
ఛ (7)

and assume that independent noises ଵ(߬) andߦ	 ଶ(߬) haveߦ
the same properties that ݃௫(߬) does. For the avoidance
of misunderstanding we immediately note that in the
statistical meaning system of equations (5) with ௣ߟ݀
from (6) is not equivalent to this system with ௣ fromߟ݀
(7). The reason is obvious – in the first case increments
௣ depend on the anglesߟ݀ and ߠ ߮, while in the second
case such dependence is absent. Nevertheless, study of
the statistical properties of the magnetic moment within
the modified Landau-Lifshitz equation is fully justified,

since, on the one hand, influence of non-Gaussian white
noises on the dynamics of m was not considered earlier,
and, on the other hand, modified equation is simpler
than the initial one.

In the present work we investigate an important
from the point of view of applications case when white
noise for simplification of designations we omit) (߬)ߦ
index p) is the Poisson noise, i.e.

(߬)ߦ = ∑ ߬)ߜ௜ݖ − ߬௜)
௡(ఛ)
௜ୀଵ . (8)

Here ௜ are the independent random values distributedݖ
in the interval (−∞, +∞) with some probability density
q(z) and which have zero mean values; δ(τ) is the Dirac
delta function; ߬௜ are the moments of generation of delta
pulses; ݊(߬) is the counting Poisson process which is cha-
racterized by the probability ܲ(݊(߬) = ݊) = ௡݁ିఔఛ(߬ߥ) ݊!	⁄
(parameter denotes the process intensity) that ߥ ݊(߬) ≥ 0
delta pulses in the range of (0,τ] took place. Using (7)
and (8) one can show [16] that the probability density
;ߤ)݌ ݀߬) = ߤ)ߜ〉 − that during time 〈(ߟ݀ ݀߬ a jump, whose
value ߟ݀ = ∫ ݀߬ᇱߦ(߬ᇱ)ఛାௗఛ

ఛ  is equal to will occur is given ,ߤ
by the expression

;ߤ)݌ ݀߬) = (1 − ν݀߬)(ߤ)ߜ + ν݀߬(ߤ)ݍ. (9)

Since probability 1 − ∫ ௭బ(ݖ)ݍݖ݀
ି௭బ

 of the values with ݖ
|ݖ| > in the (଴ is an arbitrary positive parameterݖ) ଴ݖ
general case differs from zero, direction of the vector m in
the moments of generation of delta pulses is abruptly
changed. It is important to emphasize that this change
can occur by multiple rotation of the magnetic moment.
Indeed, since ௣ߟ݀ ∊ (−∞,∞) and, consequently, ,ߠ݀ ݀߮ ∊
(−∞,∞), and (߬)ߠ	 ∊ [0, and [ߨ ߮(߬) ∊ -from the con ,(ߨ0,2]
dition ߬)ߠ൫ܕ + ݀߬),߮(߬ + ݀߬)൯ = (߬)ߠ)ܕ + ,ߠ݀ ߮(߬) + ݀߮)
one can obtain the following correlations:

߬)ߠ + ݀߬) = (߬)ߠ + ߠ݀ − ,݊ߨ2

߮(߬ + ݀߬) = ߮(߬) + ݀߮ − ݉ߨ2
(10)

and
߬)ߠ + ݀߬) = (߬)ߠ− − ߠ݀ − ,݊ߨ2

߮(߬ + ݀߬) = ߮(߬) + ݀߮− −݉ߨ2 .ߨ
(11)

Here, ݊ and ݉ are the integer numbers which at the spe-
cified and ߠ݀ ݀߮ define the number and direction of rev-
olutions of the vector m in the corresponding planes.

Thus, system of equations (5) with Poisson white
noise is now completely defined, and we can find the
corresponding generalized Fokker-Planck equation.

3. GENERALIZED FOKKER-PLANCK
EQUATION

We determine conventionally the probability density
ܲ = ,ߠ)ܲ ߮, ߬) that (߬)ߠ = and ߠ ߮(߬) = ߮

ܲ = ߠ൫ߜ〉 − ൫߮ߜ൯(߬)ߠ − ߮(߬)൯〉, (12)

where angular brackets can be interpreted as averag-
ing over realizations of random functions and (߬)ߠ ߮(߬).
Using correlations (10) and (11), probability density in
the time moment ߬ + ݀߬, ෨ܲ = ,ߠ)ܲ ߮, ߬ + ݀߬), can be rep-
resented in the form
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෨ܲ = ∑ ߠ)ߜ]⟩ − (߬)ߠ − ߠ݀ + ߮)ߜ(݊ߨ2 −߮(߬)௡,௠

−	݀߮ + (݉ߨ2 + ߠ)ߜ + (߬)ߠ + ߠ݀ + (݊ߨ2

× ߮)ߜ −߮(߬) − ݀߮ + +݉ߨ2 .⟨[(ߨ

 (13)

It is important to note that averaging in (13) is per-
formed over realizations of random functions ߬)ߠ + ݀߬)
and ߮(߬ + ݀߬). Taking into consideration independence
of random values ௣ fromߟ݀ and (߬)ߠ ߮(߬), it is convenient
to realize averaging in two steps. On the first step, one
should carry out averaging over random values ௣, andߟ݀
then average the result over realizations and (߬)ߠ ߮(߬).
With taking into account equations (5) this gives

෨ܲ = ∑ ∫ ᇱߠ݀ ∫ ݀߮ᇱଶగ
଴ ᇱߠ)ܲ , ߮ᇱ, ߬)గ

଴௡,௠ ∬ ଶߤଵ݀ߤ݀
ஶ
ିஶ

× ;ଵߤ)݌ ;ଶߤ)݌(߬݀ ߠ)ߜ](߬݀ − ᇱߠ − ଵ݂
ᇱ݀߬ − ଵߤ + (݊ߨ2

× ߮)ߜ −߮ᇱ − ଶ݂
ᇱ݀߬ − ଶߤ sinߠᇱ⁄ + (݉ߨ2 (14)

ߠ)ߜ+ + ᇱߠ + ଵ݂
ᇱ݀߬ + ଵߤ + (݊ߨ2

× ߮)ߜ −߮ᇱ − ଶ݂
ᇱ݀߬ − ଶߤ sinߠᇱ⁄ + +݉ߨ2 ,[(ߨ

where ଵ݂,ଶ
ᇱ = ଵ݂,ଶ(ߠᇱ, ߮ᇱ , ߬).

Now, using (13) and (14), we will find the derivative
߲ܲ ߲߬⁄ = limௗఛ→଴ ( ෨ܲ − ܲ) ݀߬⁄ . To this end, it is enough to
take into consideration only linear in ݀߬ terms in  (14).
Writing in this approximation

;ଵߤ)݌ ;ଶߤ)݌(߬݀ ݀߬) = (1 − 2ν݀߬)ߜ(ߤଵ)ߜ(ߤଶ)

+ν݀߬ߜ(ߤଵ)ݍ(ߤଶ) + ν݀߬ݍ(ߤଵ)ߜ(ߤଶ)
 (15)

and using the delta function properties, after a number
of transformations we obtain the desired generalized
Fokker-Planck equation

డ
డఛ
ܲ = − డ

డఏ ଵ݂ܲ−
డ
డఝ ଶ݂ܲ− ܲߥ2

ߠsinߥ+ ∫ ,ߠ)ܲ′߮݀ ߮ᇱ , ߬)∑ ߮]ߠsin)ݍ − ߮ᇱ + ௠([݉ߨ2
ଶగ
଴

ߥ+ ∫ ,߮,′ߠ)ܲ′ߠ݀ ߬)∑ ߠ)ݍ − ′ߠ + ௡(݊ߨ2
గ
଴ (16)

ߥ+ ∫ ᇱߠ)ܲ]ᇱߠ݀ , ߮ + ,ߨ ߬)|ఝழగ ᇱߠ)ܲ+ , ߮ − ,ߨ ߬)|ఝவగ
గ
଴ ]

× ∑ ߠ−)ݍ − ᇱߠ + ௡(݊ߨ2 .

This equation, in contrast to the usual Fokker-Planck
equation, is integro-differential one that is conditioned
by abrupt behavior of the direction of the magnetic mo-
ment vector under the action of the Poisson noise. As
usual, solution of equation (16) should be normalized,
∫ ߠ݀ ∫ ݀߮ଶగ

଴ ,ߠ)ܲ ߮, ߬) = 1గ
଴ , and satisfy some initial con-

dition ,ߠ)ܲ ߮, 0) = ଴ܲ(ߠ, ߮).

4. ANALYSIS OF THE GENERALIZED FOKKER-
PLANCK EQUATION

We consider some properties of the solutions of the
generalized Fokker-Planck equation (16). First of all we
note that probability density ,ߠ)ܲ ߮, ߬) is nonnegative
function. This directly follows from the definition (12)
and delta function properties. Normalization condition
∫ ߠ݀ ∫ ݀߮ଶగ

଴ ,ߠ)ܲ ߮, ߬) = 1గ
଴  also follows from this defini-

tion. However, to additionally verify the correctness of

equation (16), it is also reasonable to show that this
equation remains normalization. To this end, we will
integrate both sides of equation (16) over all allowed
values of angles and ߠ ߮. Then, changing the sequence
order of differentiation and integration operations and
taking into account the normalization condition, it is
easy to see that the left side is equal to zero. Similarly,
transforming the right side with taking into considera-
tion the fact that functions ܲ and ଵ݂,ଶ are periodic in
variable ߮ with period it is easy to ascertain that if ,ߨ2

∫ ݀߮[( ଵ݂ܲ)|ఏୀగ − ( ଵ݂ܲ)|ఏୀ଴]ଶగ
଴ = 0, (17)

then integrated equation (16) takes the form 0 = 0. Thus,
equation (16) remains normalization of ܲ if condition
(17) holds.

Now consider the simplest case of the free magnetic
moment which interacts only with the Poisson noise. In
this case, ଵ݂ = ଶ݂ = 0, and stationary solution of equation
(16), ୱܲ୲ = limఛ→ஶܲ(ߠ, ߮, ߬), can be obtained in the form
ୱܲ୲ = According to (16), function .(ߠ)ܨ satisfies the (ߠ)ܨ

following equation:

(ߠ)ܨ2 = sinߠ (ߠ)ܨ ∫ ݀߮ᇱ∑ ௠ߠsin)ݍ
ଶగ
଴

× [߮ −߮ᇱ + ([݉ߨ2 + ∫ గ(′ߠ)ܨ′ߠ݀
଴ (18)

×∑ ߠ)ݍ] − ᇱߠ + ௡(݊ߨ2 + ߠ−)ݍ − ᇱߠ + ,[(݊ߨ2

which, taking into account correlation

∫ ݀߮ᇱ∑ ߠsin)ݍ [߮ − ߮ᇱ + ௠([݉ߨ2
ଶగ
଴ = ଵ

ୱ୧୬ ఏ
, (19)

is reduced to the form

(ߠ)ܨ = ∫ ∑(′ߠ)ܨ′ߠ݀ ߠ)ݍ] − ᇱߠ + ௡(݊ߨ2
గ
଴

ߠ−)ݍ+ − ᇱߠ + .[(݊ߨ2
(20)

Using correlation

∑ ∫ ߠ)ݍ]ߠ݀ − ᇱߠ + +(݊ߨ2 ߠ−)ݍ − ᇱߠ + గ[(݊ߨ2
଴௡

= ∫ (ݔ)ݍݔ݀ = 1,ஶ
ିஶ

 (21)

it is easy to verify that integral equation (20) is compat-
ible with normalization condition ∫ ߠ݀ ∫ ݀߮ଶగ

଴ గ(ߠ)ܨ
଴ = 1

of the stationary probability density .(ߠ)ܨ  It  is  also
interesting to note that solution of equation (20) does
not describe uniform distribution of the magnetic mo-
ment as one would expect based on the physical consid-
erations. Indeed, representation (ߠ)ܨ = sin ߠ ⁄ߨ4  would
take place in the case of uniform distribution. However,
this function is not the solution of equation (20), since
at ߠ = 0 its left side is equal to zero and right one – is
not. The fact that probability density (ߠ)ܨ = sinߠ ⁄ߨ4 ,
corresponding to the uniform distribution of the mag-
netic moment, is not the solution of stationary equation
(20) follows from the use of the Ito interpretation of the
initial system of stochastic equations (2). In connection
with this we note that the same situation, namely, the
discrepancy of stationary solutions of the Fokker-Planck
equation at different interpretations of the Langevin
equation with multiplicative noise, takes place also in
the simplest case of the Gaussian white noise [5].
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5. CONCLUSIONS

Within the modified Landau-Lifshitz equation sto-
chastic dynamics of the nanoparticle magnetic moment
induced by the Poisson white noise is considered for the
first time. Using the Ito interpretation of stochastic equa-
tions and a step-wise change of the magnetic moment
direction, we have derived the generalized Fokker-Planck

equation for the probability density of its orientation.
Analysis of this equation, whose key feature is its inte-
gral character, has shown that change in the probability
density occurs with conservation of its normalization. It
is also established that due to the use of the Ito interpre-
tation of the Landau-Lifshitz equation, stationary dis-
tribution of the free magnetic moment is not uniform.
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