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1. INTRODUCTION 
 

The rapid development of nanoelectronics in the 

last 10-15 years has led not only to the creation and 

wide use of nanotransistors and a variety of nanoscale 

electronic devices, but also to the deeper understanding 

of the causes of current, exchange and energy dissipa-

tion, and the operation principles of nanoscale devices 

as well as conventional electronic devices [1-4]. Nowa-

days, the revolutionary changes in electronics require 

reviewing the content of physics studies at the univer-

sity. A similar revolutionary situation was 50 years ago 

after the discovery of the transistor, which led not only 

to the widespread use of microelectronic devices, but 

also to a radical revision of the university and engi-

neering courses of General Physics, not to mention the 

special courses in electronics and related disciplines. 

The materials and substances used in electronics are 

characterized by such integral properties as carrier 

mobility and optical absorption coefficient, with further 

use to explain the observed physical phenomena and 

modeling of various electronic devices from the time of 

formation physics of solid state. Now with the shift to 

meso- and nanoscopic the nano- and molecular transis-

tors require using of laws of quantum mechanics and 

non-equilibrium statistical thermodynamics for its de-

scription and simulation from the very outset, which 

inevitably leads to a revision of university physics 

courses at the beginning. 

According to Ohm's law, the resistance R and con-

ductance G of the conductor with length L and cross-

sectional area A are given by expressions: 
 

  / / and 1/ /R V I L A R G A L     , (1) 
 

where the resistivity ρ and its inverse conductivity  

does not depend on the geometry of the conductor and 

the properties of the material from which the conductor 

is made. Ohm's law says that length reduction of the 

conductor several times reduces the resistance in the 

same number of times. And if we reduce the length of 

the conduction channel to a very small size, does it 

mean that the resistance will be almost "neutral earth-

ing"? 

With usual "diffusive" motion of electrons through a 

conductor the mean free path in conductor is less than 

1 micron and varies widely, depending on the tempera-

ture and the nature of the conductor material. The 

length of the conduction channel in the current FET is 

~ 40 nm, which are few hundred atoms. It is appropri-

ate to ask the question: if the length of the conductor is 

less than the diffusion length of the mean free path, 

does the electron motion become ballistic? Will re-

sistance obey Ohm's law in the usual record? And what 

if one reduces the length of the conduction channel to a 

few atoms? Does it make sense to speak of the re-

sistance in itself? All these questions were the hot dis-

cussion topic 15-20 years ago. Nowadays the answers to 

these questions are given and reliably supported by 

numerous experimental data. And even the resistance 

of the hydrogen molecule was measured. [5] 

Attention is drawn to the fact that the impressive 

success of the experimental nano-electronics didn’t 

have any effect on the way we think, learn, and explain 

the concept of resistance, conductivity and operation of 

electronic devices in general. And until now, apparent-

ly, for historical reasons the familiar concept of "top-

down" from the massive conductors to molecules domi-

nates. This approach was acceptable as long as there 

was not enough experimental data on the measure-

ment of conductivity of nanoscale conductors. In the 

last decade, the situation has changed. Vast experi-

mental data are accumulated for large and maximum 

small conductors. The development of the concept of 

"bottom-up" conductivity, which was not only found to 

be complementary to concept of "top-down" but also led 

to a rethinking of the operation principles of conven-

tional electronic devices, has begun [6-8]. Recall that 

the concept of "bottom-up" from the hydrogen atom in 

the direction of the solid dominates in quantum me-

chanics from the start. 

There is another range of problems in nanoelectro-

nics, for which the concept of "bottom-up" is very inter-

esting. This is the transport problem. In conventional 

electronics transport of particles is described by the 

laws of mechanics-classical or quantum. Transport in 

bulk conductors is accompanied by heat, which is de-
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scribed by the laws of thermodynamics-conventional or 

statistical. Processes are reversible in mechanics, and 

irreversible in thermodynamics. Strictly speaking, it is 

impossible to separate these two processes – the 

movement and heat. There is quite different situation 

in nanoelectronics. Here the process of electron motion 

and heat are spatially separated: the electrons move 

elastically, ballistic ("elastic resistance"), and heat gen-

eration occurs only at the interface of the conductor 

and the electrodes. The concept of "elastic resistor" was 

proposed by Landauer in 1957 [9-11] long before its 

experimental confirmation in nanotransistors. The con-

cept of "elastic resistor", properly speaking, is an ideal-

ization, but it is reliably confirmed by numerous exper-

imental data for the ultra-small nanotransistors. The 

development of the concept of "bottom-up" [12] has led 

to the creation of the unified picture of transport phe-

nomena in nanoscale electronic devices as well as in 

macrodimension ones. 

The paper presents the causes of the origin of cur-

rent and the role of electro-chemical potentials under 

the concept of "bottom-up" and the Fermi functions in 

this process. Furthermore, the model of «elastic resis-

tor» is considered and a new formulation of Ohm's law 

is given. Within the framework of conception "below-

up" the general questions of electronic conductivity will 

also be considered, including the example of graphene. 

 

2. THE CAUSE OF THE CURRENT 
 

When asked about the cause of current by applying 

the potential difference at the ends of the conductor 

usually refer to the relationship of the current density j 

and the external applied electric field E 
 

 j  E, (2) 
 

in other words, electric field is usually considered the 

cause of current. The answer is, at the best case, in-

complete. Before connecting conductor to the cleats of 

the voltage source the strong electric fields created by 

nuclei affects electrons of the conductor and current is 

still not arise. Why do the strong internal electric fields 

not cause the movement of electrons, but much weaker 

external electric field of battery causes movement of 

electrons? It is usually said that the internal micro-

scopic fields can’t cause movement of the electrons, it is 

necessary to attach an external macroscopic field. This 

explanation can not be satisfactory. It is impossible 

definitively separate the internal and external electric 

fields in present-day experiments of measuring the 

individual molecules conductivity. We have to take this 

lesson learned us by present experimental nanoelec-

tronics, and re-ask the question why the electrons move 

when the battery is connected to the ends of the con-

ductor. 

To answer the question about the cause of current 

from the start we need two concepts – the density of 

free states, those occupied by electrons per unit energy 

D (E) and electrochemical potential 0 (Fig. 1). For 

simplicity's sake, that will not affect the final conclu-

sions, we will use the point model of conductor (the 

channel of electron transfer), which assumes the im-

mutability of the density of states D (E) as they move 

along a conductor. If the system comprising the source 

electrode (S / Source), conductor M and stock electrode 

(D / Drain) are in equilibrium (shorted), the electro-

chemical potential 0 is the same everywhere, and all 

states with E < 0 filled with electrons, and the states 

with E > 0 are empty (Fig. 1). 
 

 
 

Fig. 1 – The first step in explaining the operation of any elec-

tronic device should be setting the density of states D (E) as 

the function of the energy E in the conductor M and determi-

nation of the equilibrium value of the electrochemical poten-

tial 0, separating the occupied electron states from empty 

states 
 

When the voltage source in the circuit (Fig. 2) the 

potential difference V reduces all energies on the posi-

tive electrode D on the value of qV, where q – charge of 

electron, resulting in the electrodes the electrochemical 

potential difference is created 
 

 1 2–  qV   . (3) 

 

Just as the temperature difference causes heat flow, 

and the difference in the levels of fluid leads to its 

flows, and electrochemical potential difference is the 

cause of the current. Only the state of the conductor in 

the interval 1 – 2 and located enough close to the val-

ues of 1 and 2 contribute to the electron flow, while 

all the state that are much higher μ1 and lower 2 do 

not play any role. The reason is as follows. 

Each contact seeks to lead the current channel to 

the equilibrium with itself by filling all the states of the 

channel with electrons with energy less than the elec-

trochemical potential 1, and emptying of states of 

channel with energy greater than the potential μ2. 

Consider the current channel with the states with en-

ergy less than 1, but more 2. Contact 1 is seeking to 

fill these states, because their energy is lower than 1, 

and contact 2 tends to empty these states because their 

energy is greater than 2, which leads to the continu-

ous movement of electrons from contact 1 to contact 2. 

Now consider the state of the channel with energy 

greater than 1 and 2. Both contacts tend to empty 

these states, but they are empty and do not make their 

contribution to the electrical current. The situation is 

similar to the states when energy is less at the same 

time than both potentials μ1 and μ2. Each contact is 

seeking to fill them with electrons, but they are already 

filled, and can’t make the contribution to the current,  
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Fig. 2 – When the voltage V is applied at the terminals of the 

conductor the anode potential D is reduced by the value of qV, 

creating the electrochemical potential difference 1 – 2 = qV 

at the ends of the conductor 
 

or rather can’t make one within a few kT of the window 

width of the conduction, that we will see later. 

A similar picture is almost self-evident, if not for 

the usual claim that the electrons move in the electric 

field inside the conductor. If this was the case, all the 

electrons, not just those ones, whose state energy lies 

within the potential difference on the ends of the con-

ductor, would have to make the contribution to the cur-

rent. 

 

3. THE ROLE OF THE FERMI FUNCTIONS  
 

Thus, it was argued that in equilibrium all states 

with energy E < 0 are filled with electrons and the 

states with energy E > 0 are empty. This is true only 

to near of absolute zero. More precisely, the transition 

from the fully filled states to empty ones occurs in the 

gap ~ ± 2 kT, covering the value E  0, where k – 

Boltzmann constant, T – absolute temperature. Math-

ematically, this transition is described by the Fermi 

function 
 

  
0

1

exp 1
k

f E
E

T




 
 

 

 (4) 

 

Graph of the Fermi function is shown in Fig. 3 on 

the left, perhaps in a slightly unusual form of energy in 

dimensionless units on the vertical axis, which will 

later allow us to combine Fermi function with graph of 

the density of states D (E) in order to explain the rea-

sons for current generation. 

Fermi function plays the key role in statistical me-

chanics, but also for our purposes enough to under-

stand that the state with the low energy are always 

occupied (f  1), while the states with high energy are 

always empty (f  0), and the transition from f  1 to 

f  0 occurs in the narrow energy range ~ ± 2 kT, cover-

ing the value E  0. 

Indeed, in Fig. 3 it is shown the derivative of the 

Fermi function, multiplied by kT in order to make it 

dimensionless 
 

  , kT

f
F E T

E


 
  

 
 (5) 

 
 

Fig. 3 – Graphs of the Fermi function and the normalized 

function of thermal broadening 
 

Substituting the expression for (4), we see that 
 

  
 

2
,

1

x

T
x

e
F E

e
 



, (6) 

 

where x ≡ (E – ) / kT. From (6) we see immediately 

that 
 

      ,T T TF E F E F E       (7) 

 

and from equations (6) and (4) it follows that 
 

  1TF f f  . (8) 

 

Integrating of the function (8) in the entire range of 

energy gives the area equal kT 
 

 
 

   

, k

k k 1 0 k

T

f
dEF E T dE

E

T f T T


 

 





 
   

 

   

 
 (9) 

 

So that the function FT can roughly be thought of as 

a rectangular “impulse”, centered about the meaning of 

E  0 with height equal to 1/4 and width about 4 kT. 

 

4. OUT OF BALANCE  
 

When the system (Fig. 1) is in equilibrium, the elec-

trons are distributed according to the available states 

according to the Fermi function. There are no simple 

rules for calculation of the electron distribution func-

tion when out of balance. It all depends on the specific 

task to be solved by the methods of nonequilibrium 

statistical mechanics. 

In this special case of out of equilibrium (Fig. 2) you 

can be safely argued that both contacts S and D are so 

large compared to the electron-transfer channel that 

they can’t get out of equilibrium. Each contact locally is 

in equilibrium with its own electrochemical potential, 

producing two Fermi function (Fig. 4) 
 

  1
1

1

exp 1
k

f E
E

T




 
 

 

 (10) 

 

and 
 

  2
2

1

exp 1
k

f E
E

T




 
 

 

. (11) 
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Fig. 4 – When they get out of balance the electrons in the 

contacts take available to them the states in accordance with 

the Fermi distribution, and the values of electrochemical po-

tentials 
 

Summing up, it is stated that the reason of the cur-

rent is the difference in the preparation of the equilibri-

um states of contacts, displayed by their respective Fer-

mi function f1(E) and f2(E). Qualitatively, this is true for 

any conductors – nanoscale and macrodimension ones. 

However, for nanoscale conductors the current is propor-

tional to the difference I (E) ~ f1 (E) – f2 (E) of the Fermi 

distributions in both contacts at any value of the energy 

of the electronic states in a conductor. This difference 

vanishes if the energy E is greater 1 and 2, as in this 

case; both the Fermi functions are zero. This difference 

also vanishes if the energy E is smaller 1 and 2, as in 

this case, both the Fermi functions are equal to one. 

Current arises only in the window 1 – 2, if it contains 

at least one electronic state of the conductor. 

 

5. LINEAR RESPONSE 
 

The current-voltage characteristic is usually non-

linear, but it could be single out plot of "linear re-

sponse", which implies conductance dI / dV at V → 0. 

We construct the function of the difference of the 

two Fermi functions, normalized to the applied voltage 
 

  
   1 2

q / k

f E f E
F E

V T


 , (12) 

 

Where 
 

 
 

 
1 0

2 0

q / 2

q / 2

V

V

 

 

 

 
. (13) 

 

Function of the difference F (E) is narrowed as the 

voltage V, multiplied by the charge of the electron, be-

comes smaller than kT (Fig. 5). Note also that as kT 

begins to exceed the energy qV, function F (E) is get-

ting closer to the function of the thermal broadening (5) 

F (E) → FT (E) at qV / kT → 0, so that from equations 

(12) follows that 
 

       0
1 2 0

q
, q

k
T

fV
f E f E F E V

T E


 
    

 
 (14) 

 

if the applied voltage multiplied by the electron charge, 

1 – 2  qV becomes much smaller kT. 
 

We also need the following expression 
 

      0
0 0

f
f E f E

E
 


   


 (15) 

 
 

Fig. 5 – The graph of the difference F (E) depending on the 

value (E – 0) / kT for different qV / kT ≡ y 
 

which, like the equation (14), can be obtained as fol-

lows. 

For the Fermi function 
 

  
1

,
k1x

E
f x x

Te


 


 (16) 

 

we have 
 

 

2

1

k

1

k

k

f df x df

E dx E dx T

f df x df

dx dx T

f df x df E

T dx T dx T

 



 
 

 

 
  

 

  
  

 

, (17) 

 

where from 
 

 

f f

E

f E f

T T E





 
 

 

  
 

 

. (18) 

 

Equation (15) is obtained from the decomposition of 

the Fermi function in Taylor series near the point of 

equilibrium 
 

      
0

0 0, ,
f

f E f E
 

   




 
   

 
. (19) 

 

From equation (18) it follows 
 

 

00

f f

E   
 

   
    

   
. (20) 

 

Let f(E) corresponds to f(E, ), and f0(E) corresponds 

to f (E, 0), then 
 

      0 0

f
f E f E

E
 

 
    

 
, (21) 

 

that after rearrangement gives the required equation 

(15), which is true for  – 0 << kT. 
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Preliminary results. Conductivity of materials can 

vary by more than 1020 times, going, for example, from 

silver to glass – the substances that very distant from 

each other in the scale of conductivity. The standard 

explanation for the difference in the conductivity is 

alleged that the density of "free electrons" in these ma-

terials is very different. This explanation immediately 

requires explanations which electrons are free, and 

which are not. This difference becomes more and more 

absurd as the transition to the nanoscale conductors. 

The concept of "bottom-up" offers the following sim-

ple answer. Conductivity depends on the density of 

states in the window with width of a few kT, covering 

the equilibrium electrochemical potential μ0, defined by 

the function FT (equation 5, Fig. 3), which is different 

from zero in a small gap with width a few kT around 

the equilibrium value of the electrochemical potential. 

It's not in the total number of electrons, which is of 

the same order as in silver, and in the glass. The key 

point is the presence of the electronic states in the 

range of meaning of electrochemical potential 0 that 

basically distinguishes one substance from another. 

The real answer is not new, and it is well known to 

experts in the field of nanoelectronics. However nowa-

days discussion usually starts with the Drude theory 

[13], which has played an important historical role in 

understanding the nature of the current. Unfortunate-

ly, the approach of the Drude spawned two misunder-

standings that should be overcome, and especially in 

the teaching of physics, such as: 

(1) Current is generated by an electric field; 

(2) Current depends on the number of electrons. 

Both misconceptions related to each other, as if the 

current would indeed be generated by an electric field, 

then all the electrons would be affected by the field. 

Lessons learned from our experimental nanoelec-

tronics, show that the current generated by the "prepa-

ration" of the two contacts f1(E) – f2(E), and this differ-

ence is not zero only in the window around the equilib-

rium electrochemical potential 0. Conductivity of the 

channel is high or low depends on the availability of 

the electronic states in the window. This conclusion 

usually come through the Boltzmann transport equa-

tion [14] or Kubo formalism [15], while we use the con-

cept of "bottom-up" immediately gives a physically cor-

rect picture of the current. 

 

6. MODEL OF ELASTIC RESISTANCE  
 

Thus, the current generated by the "preparation" of 

the two contacts 1 and 2 with the Fermi functions f1(E) 

and f2(E). The larger value of the electrochemical po-

tential corresponds to negative terminal 1, and a lower 

value – to positive. Negative terminal is willing to 

transfer the electrons in the conduction channel, and 

positive contact seeks to extract electrons from the 

conduction channel. This is true for any conductors – 

either nanoscale, or macrodimension. 

Model of elastic resistor serves as a useful idealiza-

tion that provides physically correct explanation of 

functioning of nanoscale conductors and opens the pos-

sibility for a new interpretation of macrodimension 

devices. Rolf Landauer proposed the concept of «elastic 

resistor» in 1957 [9-11] long before its experimental 

confirmation in nanotransistor. [1] The concept of 

"elastic resistor", strictly speaking, is an idealization, 

but it is reliably confirmed by numerous experimental 

data for ultra small nanotransistors. [3] Development 

of the concept of elastic resistor [6-8, 12] has led to the 

creation of a unified picture of transport phenomena in 

electronic devices of any dimension. 

In the elastic resistor model electrons swaps the 

conduction channel from the source contact S to stock 

one D elastically, without loss or acquisition of energy 

(Fig. 6). 
 

  
 

Fig. 6 – In the elastic resistor electrons move ballistically 

through the channels with constant energy 
 

Current in the range of energy from E to E + dE is 

separated from the channel in the elastic resistor with 

different values of energy that allows us to write for the 

current in the differential form 
 

       1 2dI dEG E f E f E  , (22) 

 

and after integration to obtain an expression for the 

total current. Then, using the expression (14), we ob-

tain the expression for the low voltage conductivity 

(linear response) 
 

  0fI
G dE G E

V E





 
   

 
 , (23) 

 

in which the negative derivative (– ðf0 / ðE) can be 

thought as a rectangular impulse, whose area is equal 

to one and the width ~ ± 2 kT (Fig. 3). According to 

(23), the conductivity function G(E) for the elastic resis-

tor, being averaged over the range of ~ ± 2 kT, which 

includes the value of the electrochemical potential 0, 

gives the experimentally measured conductance G. At 

low temperatures, you can simply use the value of G(E) 

with E  0. 

Such energetic approach to the conductivity in the 

elastic resistor model provides the significant simplifi-

cation in understanding of the current causes, although 

it sounds paradoxical, because we traditionally associ-

ate the current I through the conductor with the re-

sistance R and the Joule heat I2R. How can we talk 

about resistance when electrons moving through a con-

ductor do not lose energy? 

The answer is that since the electrons do not lose 

energy when driving on elastic resistor, energy loss 

occurs at the conductor boundary with the source and 

stock contacts, where Joule heat is dissipated. In other 

words, the elastic resistance, characterized by the re-

sistance R of the conductance channel, dissipates Joule 

heat I2R outside of the conductance channel. This is 

indicated by the many different experimental meas-

urements, direct and indirect, on the nanoscale conduc-

tors [3, 4], not to mention the fact that the dissipation 

of heat, whether a single molecule or nanoconductor, 



 

YU.A. KRUGLYAK, P.A. KONDRATENKO, YU.M. LOPATKIN J. NANO- ELECTRON. PHYS. 5, 01023 (2013) 

 

 

01023-6 

would lead to their combustion, and the general opin-

ion now is that the combustion does not occur in real 

experiments as overwhelming majority of the heat is 

generated at the contacts, which are quite massive and 

thus fairly easy dissipate heat. 

The concept of elastic resistor does not include the 

obligatory follow of an electron along a straight path 

from the source to the drain and it is allowed the "dif-

fusion" motion with the variable impulse vector, but no 

change in energy. 

Model of elastic resistor is introduced not only as a 

useful concept for explaining the operation of nanoscale 

devices, but also because this model allows explaining 

the transport properties such as conductivity in 

macrodimension conductors. This model makes the 

concept of a "bottom-up" [8, 12] so effective in explain-

ing the transport phenomena in general. We will re-

turn to this statement later, but now we will get the 

expression for the conductivity of the elastic resistor. 

 

7. THE CONDUCTIVITY OF THE ELASTIC  

RESISTOR 
 

In the spirit of the concept of "bottom - up", we will 

consider a simple elastic resistor with a single channel 

of energy ε, from which the electron jumps from the 

source to the drain (Fig. 7). 
 

  
 

Fig. 7 – One-level model of elastic resistor with energy in the 

channel  
 

Recall that by assigning a negative charge to elec-

tron, which is not possible to change, the contact with 

more voltage D has a smaller electrochemical potential, 

and the motion of the electron through the channel 

comes from the larger value of the electrochemical po-

tential to a smaller, so that the current direction is 

opposite to the actual movement of electrons from the 

source S to the drain D. In fact, we always have in 

mind that this is the real current of electrons, rather 

than the current in the usual sense. 

The resulting single-channel current is 
 

     1 2

q
I f f

t
    (24) 

 

where t is the time required for an electron leakage 

from the source S to the drain D. You can now general-

ize the expression (24) to arbitrary elastic resistor 

(Fig. 6) with the arbitrary density of states D(E), bear-

ing in mind that all the energy channels in elastic re-

sistor conduct independently and in parallel mode. 

First, we write down the expression for the current in 

the channel with the energy from E to E + dE 
 

 
 

    1 2

q

2

D E
dI dE f E f E

t
  , (25) 

 

which takes into account that there are D(E)dE states 

in this channel and only half of them contribute to the 

current from the source S to the drain D. Integrating, 

we obtain an expression for the current through the 

elastic resistor 
 

       1 2

1

q
I dEG E f E f E





  , (26) 

 

where 
 

  
 
 

2q

2

D E
G E

t E
 . (27) 

 

If the difference 1 – 2  qV by voltages V on con-

tacts is much smaller than kT, it is entitled to use 

equation (14) and write 
 

  0fI V dE G E
E





 
  

 
 , (28) 

 

which leads to the equation (23). In general case, 
 

 
2q

2

D
G

t
 , (29) 

 

However, we must remember that the density of 

states D and the time of flight t in general case depend 

on the energy and should be averaged within ± 2kT, 

including electrochemical potential 0. This expression 

is submitted correct and intuitive. It argues that the 

conductivity is proportional to the product of two fac-

tors, namely, the presence of states (D) and the ease 

with which the electron covers the distance from the 

source to the drain (1 / t). This is the key result for fur-

ther discussion. Now we turn to the more detailed con-

sideration of heat dissipation by the elastic resistor. 

8. HEAT DISSIPATION BY ELASTIC RESISTOR  
 

The resistance R of the elastic resistor is deter-

mined by the channel, and the corresponding heat I2R 

is released outside the conductance channel. Let us 

consider the situation on the example of a single-level 

model of the elastic resistor with energy in the channel 

ε (Fig. 7). Each time when an electron jumps ballistical-

ly the channel from the source, it is in the state of "hot  

 
 

Fig. 8 – Instantaneous picture after breakthrough of electron 

from source to drain in the channel with energy , excess elec-

trochemical potential of drain 2 
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electron" at the drain of energy ε, excess electrochemi-

cal potential of drain 2 (Fig. 8). 

In the drain contact the dissipation processes quick-

ly dissipate the excess energy  – 2. Similarly, on the 

source contact "hole" with energy , less than the elec-

trochemical potential 1 of the source, filled with elec-

trons, and the excess energy 1 –  dissipates on source 

(Fig. 9). 
 

 
 

Fig. 9 – After the ballistic flight of the electron from the 

source to the drain through the channel with energy , on 

source energy 1 – ε is released , and on the drain the energy 

 – 2 is released, and contacts are in balance again 
 

The total energy dissipated on the contacts is 1 –

 μ2  qV. If N electrons skip from the source to the 

drain in the time t, then the power dissipated at the 

contacts 
 

 q /P V I V N t    . (30) 
 

Thus, the heat generated by the passage of current 

in elastic resistor dissipates on the contacts, which al-

ready has experimental evidence for nano- and meso-

dimensional conductors [16]. The attractiveness of the 

elastic resistor model is that the mechanical and ther-

modynamic processes are spatially separated. 

 

9. MODEL OF ELASTIC RESISTOR AND MAC-

ROCONDUCTORS 
 

It is natural to wonder about the validity and use-

fulness of the elastic resistor model to explain and un-

derstand the physics of the phenomenon of current flow 

in normal macroconductors, in which the electron mo-

tion is apparently inelastic. In macroconductors inelas-

tic processes are combined with flexible and randomly 

distributed throughout the conductor (Fig. 10). We par-

tition a macroconductor with randomly distributed the 

inelastic collisions on sequence of elastic resistors 

(Fig. 11) of length L, that much shorter than the real 

macroconductor, and with the voltage drop between the 

adjacent elastic resistors, which is the small fraction of 

the potential difference at the ends of the real conduc-

tor 1 – 2  qV. In the partition the lengths L must be 

less than the length of Lin, which is the electron mean 

free path to the next inelastic collision. While partition-

ing except the condition L < Lin it should be comply the 

requirement that the voltage drop between the adja-

cent elastic resistors ΔV < kT / q. 
 

 
 

Fig. 10 – In macroconductors the inelastic processes combined 

with elastic ones 
 

 
 

Fig. 11 – Hypothetical partition of the real macroconductor on 

the series of the elastic resistors 
 

Partitioning the large conductor to the elastic resis-

tors requires some care. As will be shown below, the 

standard expression for Ohm's law should be changed 

to 
 

   /R L A   , (31) 

 

where A − the cross-sectional area of  the conductor, in 

which the additional resistance  / A does not depend 

on the length of the conductor and can be interpreted 

as borderline resistance, which occurs at the boundary 

of the channel / contact. In the expression (31)  is the 

length, which is close to the mean free path, so such 

modification of Ohm's law is significant only for ballis-

tic conductors (L ~ ) and is not significant for large 

conductors (L >> ). However, conceptually, this addi-

tional resistance will be extremely important if using 

the hypothetical structure in Fig. 11 to explain the real 

situation in Fig. 10. Structure in Fig. 11 has a lot of 

boundary interfaces that do not exist in the real situa-

tion (Fig. 10), so you should get rid of the virtual 

boundaries. For example, if a resistance (31) character-

izes each section of length L in Fig. 11, the correct ex-

pression for the conductor in Fig. 10, for example, with 

the length 3L will be 
 

  3 /R L A   , (32) 

 

rather than 
 

  3 3 /R L A   . (33) 

 

Thus, to obtain the correct expression for the con-

ductivity of the long conductor in the frame of the elas-

tic resistor model you should carefully separate the 

boundary resistance from the conductor resistance, 

depending on its length. 

 

10. BALLISTIC AND DIFFUSIVE TRANSPORT  
 

As we saw above, the conductivity of the elastic re-

sistor is given by (29) 2q / 2G D t . 

We will show that the transit time t through the re-

sistor of length L in diffusion mode with the mean free 

path  is related to the transit time in the ballistic re-

gime tB by ratio 
 

 1B

L
t t



 
  

 
. (34) 

 

Substituting (34) into (29) and taking into account 

that 
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 2q / 2B BG D t  (35) 

 

we  will finally obtain for the conductivity in the diffu-

sive mode 
 

 BGG
L







. (36) 

 

Inverting the conductivity (36), we will obtain for 

Ohm's law in a new formulation 
 

  R L
A


  , (37) 

 

where 
 

 
1 1

BA A G



 
  . (38) 

 

Until now, it was the three-dimensional resistor 

with a cross-section A (Fig. 12). 
 

 

 

 

 

 

 
 

Fig. 12 – Conductors of dimension 3d, 2d and 1d 
 

The various experiments are performed on two-

dimensional conductors with a width W and single-

dimensional cross-section. For such 2d-resistors the 

corresponding expressions for Ohm's law, obviously, 

have the form 
 

  
W

R L


   (39) 

 

where 
 

 
1 1

BW W G



 
  . (40) 

 

Finally, for one-dimensional conductors we have 

  R L   , (41) 

 

where 
 

 
1 1

BG


 
  . (42) 

 

We will write Ohm's law compactly for conductors of 

all three dimensions 
 

  
1 1

1, ,R L
W A

 
 

   
 

, (43) 

 

where 
 

 
1 1 1

1, ,BG
W A

 


 
   

 
. (44) 

 

The expression in the curly brackets corresponds 

1d-, 2d-and 3d-conductors. Note that the resistivity 

and conductivity have different dimensions, depending 

on the dimensions of the conductor, and the conductivi-

ty and the length is still measured in meters and sie-

mens. 

Standard Ohm's law says that the resistance tends 

to zero with decreasing length of the conductor to zero. 

Nobody expects that the resistance becomes zero, but 

common consensus is that the resistance tends to the 

certain boundary resistance, which can be made arbi-

trarily small with the improvement of measurement 

technology. The experimentally established fact is that 

under the most carefully prepared contact the observed 

minimal resistance is associated with the channel con-

ductance and is independent of the contact [2]. Modi-

fied Ohm's law reflects this fact: even at approaching 

the length conductor to zero the residual resistance 

associated with the effective length of  is remained. It 

is appropriate, however, to ask yourself what sense is 

to talk about a non-zero length  at zero length of the 

conductor. The answer is the fact that for nanoscale 

conductors neither resistivity ρ, nor the length  has 

sense separately, and only their product is essential. 

 

11. BALLISTIC AND DIFFUSIVE TRANSPORT 
 

Consider how the density of states D and the time 

of flight t in the expression for the conductivity (29) 

correlate with the size of the channel in large conduc-

tors. As for the density of states, it is an additive prop-

erty. At two times large channel has twice the electron 

states, so that the density of states for large conductors 

should be proportional to the volume of the conductor 

A∙L. 

As for the time of flight t, it is usually considered 

two transport modes: 

ballistic one with t ~ L and diffusion one with t ~ L2. 

Ballistic conductance is proportional to the cross sec-

tional area of the conductor and, according to (29) does 

not depend on the length of the conductor. Such "non-

ohmic" behavior is actually observed in nanoscale con-

ductors [17]. As for conductors with diffusive transport 

mode, they show normal "ohmic" behavior of the con-

ductivity G ~ A / L. 

The difference of the two transport modes can be 

explained as follows. In the ballistic regime the time of 

flight from the source to the drain 
 

 B

L
t

u
 , (45) 

 

where 
 

 zu   (46) 

 

is the average velocity of the electrons along the axis z of 

the motion direction of electrons from source to drain. 

In the case of the diffusion mode time t quadratical-

ly depends on the length of the conductor 
 

 
2

2

L L
t

u D
  , (47) 

 

where the value D  is the diffusion coefficient in the 

frame of theory of random walks [18] 

Current 
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 2
zD    (48) 

 

where  is the mean free time. 

Using (45), we rewrite the (47) in the form 
 

 1
2

B

Lu
t t

D

 
  

 
, (49) 

 

which together with the equation (34) for the length of 

 yields 
 

 
2D

u
  . (50) 

 

To calculate the constants ū according to the equa-

tion (46) and D  according to the equation (48) it is re-

quired to the average electrons velocity in the direction 

of their movement (axis z) for all angular variables, 

depending on the dimension of the conductor d  {1, 2, 

3}. Simple calculations yield for 
 

 2 21d-conductor  andz z     ,  (51) 

 

 2 22d-conductor  2 / and / 2z z      ,(52) 

 

 2 23d-conductor / 2 and / 3z z     ,(53) 

 

with the result that 
 

  
2 1

1, ,
2

zu E 


 
   

 
, (54) 

 

  2 2 1 1
1, ,

2 3
zD E   

 
   

 
, (55) 

 

or finally for the mean free path  we have 
 

 
2 4

2, ,
2 3

D

u


 

 
   

 
. (56) 

 

We emphasize that the length λ includes a numeri-

cal factor depending on the dimensions of the conduc-

tor, as compared to its standard value of   v  . Can 

we use this standard value of ? Yes, we can, but then 

in the new formulation of Ohm's law (43) L should not 

only be replaced by L + , but add  to L , multiplied by 

the numerical factor that depends on the dimension of 

the conductor, or use the definition of the length of  in 

(56). It’s curious that this factor even for one-

dimensional conductor is not equal to one, and is two. 

The value of  is the mean free time of the flight to the 

next encounter. Since the scattering is assumed to be 

isotropic, only half of the acts collision leads the elec-

tron from the source to the drain. With regard for the 

inverse scattering the length value for  for 1d-

conductor is equal 2v. 

Now we will obtain the equation for the ballistic 

conductance. From equations (35) and (45) we have 
 

 2q 2BG Du L , (57) 

 

and substituting equations (54), we obtain 
 

 
2q 2 1

1, ,
2 2

B

D
G

L





 
  

 
. (58) 

 

Finally, substituting (56) and (58) into (44) and tak-

ing (55) we will obtain for the conductivity 
 

 2 1 1
1, ,

D
q D

L W A


 
  

 
. (59) 

 

So, the expressions for the conductivity in the bal-

listic mode (59) and diffusion mode (36) are obtained 

based on the general expression for the conductivity 

(29) and transit times (45) and (47). 

 

12. CONDUCTIVITY MODES 
 

From equation (58) it is shown that the ballistic 

conductance is proportional to the density of states per 

unit length of the conductor D / L. Since the density of 

states is proportional to the volume, it can be expected 

that the ballistic conductance is proportional to the 

cross sectional area A of the 3d-conductor or width W of 

the 2d-conductor. 

Numerous experiments have shown [17] that for 

nanoscale conductors the ballistic conductivity does not 

vary linearly with their cross-sectional area, and mul-

tiple of the quantum of conductance 
 

 
2q

BG M
h

 . (60) 

 

In other words, the real conductor can be considered 

as M independent modes of conduction, giving a total 

ballistic conduction. Taking into account (58), we ob-

tain for the number of conduction modes  

 
2 1

1, ,
2 2

hD
M

L





 
  

 
, (61) 

 

and from equations (44) and (60) the conductivity is 

expressed through the number of conduction modes M 

and the mean free path  
 

 
2q 1 1

1, ,M
h W A

 
 

  
 

. (62) 

 

We will explain in complete detail the concept of 

conduction modes hereafter. 

 

13. FUNDAMENTAL RELATIONSHIP 
 

Standard expression for the conductivity is given by 

the Drude formula [13] relating the conductivity  with 

the electron density n, the effective mass m and the 

mean free time  
 

 
21 q n

m





  , (63) 

 

or using the concept of mobility 
 

 
q

m


  , (64) 



 

YU.A. KRUGLYAK, P.A. KONDRATENKO, YU.M. LOPATKIN J. NANO- ELECTRON. PHYS. 5, 01023 (2013) 

 

 

01023-10 

we have 
 

 qn  . (65) 
 

On the other hand, it results in two equivalent ex-

pressions for the conductivity in the concept of a "bot-

tom-up", one of which expresses the conductivity 

through the product of the density of states and the 

diffusion coefficient D (59), and the other − through the 

product of the number of modes M in the channel of 

conductance and the average mean free path  (62). 

As the conductance 
 

  0fI
G dE G E

V E





 
   

 
 ,  

 

conductivity of the equations (59) and (62) must be av-

erage over the energy of a few kT, including E  0 us-

ing the function of the thermal broadening 
 

  0fdE E
E

 




 
  

 
 . (66) 

 

Equation (59) is well known, it is deduced in the 

standard textbooks on solid state physics [13], which is 

not an equivalent equation (62), the deduce of which 

usually requires the use of statistical thermodynamics 

of irreversible processes such as the Kubo formalism 

[14, 15]. 

As for the Drude model we would like to emphasize 

the following. The applicability of the Drude model is 

very limited, while the equation for the conductivity 

(59) and (62) have the most general meaning. For  

example, these equations are applicable to graphene 

[19, 20] with nonparabolic behavior of zones and "mass-

less" electrons – with properties that can’t be described 

in the Drude model. One of the lessons learned by 

nanoelectronics is broad applicability of the equations 

for the conductivity (59) and (62). 

The fundamental difference between (59) and (62) 

and the Drude theory is that the averaging (66) makes 

the conductivity as property of the Fermi surface: the 

conductivity is determined by the energy levels close to 

E  0. And according to the equations (63)-(65) of the 

Drude theory conductivity depends on the total electron 

density, summed over the entire spectrum of energy, 

which leads to the limited applicability of the Drude 

model. Conductivity of materials varies widely in spite 

of the fact that the number of electrons approximately 

equal. Low glass conductivity not because there are few 

of so-called "free" electrons in it; glass is characterized 

by a very low density of states and the number of 

modes near E  0. The concept of a "free" electron be-

longs to intuitive concept. 

For any conductor, either with the crystal or amor-

phous structure, and for molecular conductors, follow-

ing [12], we show that, regardless of the functional de-

pendence of E(p), the density of states D(E), velocity 

v(E) and impulse p(E) are related to the number of 

electron states N(E) with energy less than the values of 

E, by the ratio of 
 

         dD E E p E N E   , (67) 

 

where d – the dimension of the conductor. Using (67) to 

calculate the conductivity (59) with the diffusion coeffi-

cient (55) 
 

 2 .zD     

 

we obtain for 3d-conductor 
 

  
   

 
2q
N E E

E
A L m E


 


. (68) 

 

where the mass is defined as 
 

  
 
 

p E
m E

E
 . (69) 

 

It is easy to see that the fundamental relation (67) 

is valid for the parabolic dependence of E(r) and linear 

as in graphene [20]. For the parabolic dependence the 

mass of the carrier does not depend on the energy, 

which is not so in general case. 

Equation (68) looks like the expression (63) of the 

Drude theory, if to assume N / A·L as the electron den-

sity n. At low temperatures, it is true, as the average 

(66) at E  0 gives 
 

 

0

2 2q q /
E

N
n m

A Lm 


 



 
  

 
, (70) 

 

as N(E) with E  0 is the total number of electrons 

(Fig. 13). At nonzero temperature the situation is all 

the more sobdifficult if the density states is non-

parabolic. Note that the key factor in the reduction of 

the general expression for the conductivity (59) to (68), 

similar to the Drude formula (63), there is the funda-

mental expression (67) connecting the density of states 

D(E), velocity v(E) and impulse p(E) for the given value 

of the energy with the total number of states N(E), ob-

tained by integrating the density 

How the total number of states N(E) in (71) can be 

unambiguously associated with the density of states 

D(E), velocity v(E) and impulse p(E) for the specific 

value of energy? The answer is in the fact that (67) is 

satisfied only when the energy levels are calculated 

explicitly from the expression for E(p). It may not be in 

the energy region of the overlapping bands or, for ex-

ample, for amorphous, when the function E(p) is not 

known. In these cases, the equations (59) and (62) are 

not equivalent to (68) and you can use only the first 

one. 
 

  

Fig. 14 – The parabolic 

dispersion 

Fig. 15 – The linear dis-

persion 
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E

N E dE D E


  . (71) 

 

 
 

Fig. 13 –The equilibrium Fermi function f0(E). The density of 

states D(E) and the total number of electrons N(E) 
 

Let’s see how single zones described by the different 

ratios of E(p) leads to the fundamental equation (67), 

and thus opens the possibility to establish the relation-

ship between the expressions for the conductivity (59) 

and (62) and Drude formulas (63-65). It will also lead to 

a new interpretation of modes M(E), introduced above, 

and to explaination of their integrality. 

 

14. DISPERSION E (P) FOR CRYSTALLINE  

SOLIDS 
 

Let the standard relation between energy and im-

pulse is parabolic (Fig. 14) 

  
2

2
c

p
E p E

m
  , (72) 

 

where m is the effective mass. We will use the rela-

tion E(p) instead of E(k), although you can always go to 

the wave vector k  p / ħ. Dispersion (72) is widely used 

for various substances – for metals and semiconduc-

tors. But this is not the only possibility. For graphene 

[19, 20], which use in nanoelectronics is expected to 

lead to the next step in miniaturization, it takes place 

linear dependence from impulse (Fig. 15) 
 

 0CE E p  , (73) 

 

where vo – the constant equal to about 1/300 of the 

speed of light. Here and formerly it is used absolute 

value of impulse p. In other words, it is implied that 

the dependence of E(p) is isotropic. 

For isotropic E (p) the velocity is parallel to the im-

pulse, and its value is equal to 
 

 
dE

dp
  . (74) 

 

15. TO COUNTING THE NUMBER OF STATES 
 

The length L resistor must fit an integer de Broglie 

waves with length   h / p 
 

 
h /

L

p
   integer or p = integer • (h / L).  

 

This means that the allowed states are uniformly 

distributed for given value of p and each of the states 

occupies the interval 
 

 
h

p
L

  . (75) 

 

We define N(p) as the total number of states with 

the values of the impulse less than the specified value 

of p. For one-dimensional conductors 1d (Fig. 16) this 

function is the ratio of available length 2p (from – p to 

+ p) to the interval Δp 
 

  
2

2
h / h

p p
N p L

L

 
   

 
. (76) 

 

 

For 2d-conductors (Fig. 17) it must be divided the 

cross sectional area r2 on intervals with the length of 

h / L and cross-sectional area h / W, so that finally 
 

  
  

22

h / h / h

p p
N p W L

L W




 
    

 
. (77) 

 

For 3d-conductors the volume of sphere of radius r 

is divided on the product of the intervals 

(h / L)  (h / W1)  (h / W2), where the cross-sectional 

area A  W1  W2, so that finally 
 

  
 

  

33

2

4 / 3 4

3 hh / h /

p p
N p A L

L A

   
    

 
, (78) 

 

or gathering together for d  {1, 2, 3} we have 
 

  
   

2 3

4
2 , ,

h / 3h / h /

L L W L A
N p

p p p




   
  
  

. (79) 

 

Specifying the dispersion law E(p), we can now cal-

culate the dependence of the number of states N(E) c 

energy less than the given value of E. 

 

16. THE DENSITY OF STATES D(E) 
 

Resulting the function of the number of states N(E) 

must be equal to the density of states D(E), integrated 

over up to the state energy E 
 

    
E

N E dED E


  ,  

 

so that the density of states 
 

  
dN

D E
dE

  (80) 

 

 
 

 
Fig. 16 – To counting the 

number of states for the 1d-

conductor 

Fig. 17 – To counting the 

number of states for 2d-

conductor 
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and using equations (79) 
 

 
1 4

2 , ,
3

d

d

dN dp dp p d
D E L LW LA

dp dE dE h
 


 

   
 

.(81) 

 

Using (74) and (79) we finally obtain the required 

fundamental equation (67), independent of the disper-

sion law. 

 

17. DRUDE FORMULA 
 

As it has been shown, using (67) to calculate the 

conductivity (59) for the 3d-conductor we obtain the 

expression (68), in which mass depending on the ener-

gy is determined by equation (69). It was also shown 

that equation (68) reduces to the Drude formula (63) at 

temperatures close to zero. Now consider the conductor 

of n-type and p-type separately at temperatures differ-

ent from zero. 

 

17.1 n-type conductors 
 

Using equation (68), and assuming its independence 

of the mass m and the time τ from the energy, we ob-

tain 
 

  
2

0q 1 f
dE N E

m A L E








 
  

  
 . (82) 

Integrating by parts, we have 
 

 
       

     

0
0 0

00 0  the total number of electrons,

f dN
dE N E N E f E dE f E

E dE

dE D E f E

 


 





 
        

   

 



 (83) 

 

since the product dE  D(E)  f0(E) is the number of 

electrons in the energy range from E to E + dE. Thus, 

equation (82) reduces to the Drude 
 

 
2q N

m A L


 


, (84) 

 

keeping in mind that N / A  L   n. 

 

17.2 p-type conductor 
 

An interesting situation occurs for the p-conductors 

with the downward dispersion, for example, 
 

  
2

2
c

p
E p E

m
  . (85) 

 

Instead of the number of states in (71) we now have 

(Fig. 18) 
 

    
E

N E dED E


   (86) 

 

which gives 
 

   
dN

D E
dE

  . (87) 

 

Since the function N (E) is determined by the func-

tion N(p), which gives the total number of states with 

impulse less than a given value of p, which corresponds 

to the energy larger than the given value of E according 

to the dispersion relation (85). 

If, as before, we integrate by parts 
 

 

     

 

0
0

0

f
dE N E N E f E

E

dN
dE f E

dE

 








 
        





, (88) 

 

now the first summand does not vanish, since N(E) and 

f0(E) in the lower limit is not zero. 

This situation can be bypassed in the following way: 

to take the derivative of (1 – f0) instead of taking the 

derivative of f0 

 

 

 
 

       

    

0

0 0

0

1

1 1

0 0 1  

the total number of "holes".

f
dE N E

E

dN
N E f E dE f E

dE

dE D E f E














  
    

     

      







 (89) 

 

In other words, for the p-type conductors you can 

use the Drude formula 

 2q /n m  , (90) 
 

if the value of n means the number of "holes": smaller 

number of electrons corresponds to larger value of n. 
 

 
 

Fig. 18 – The equilibrium Fermi function f0(E), the density of 

states D(E) and the number of states N(E) for the p-conductor 

with the dispersion (85) 

 

17.3 Graphene 
 

How to calculate the value of n when zones spread 

in both directions as in graphene with dispersion 

E  ± v0p [19, 20] (Fig. 7, left). It is impossible not to 

recognize the ingenious to split zone in graphene on the 

n-type zone and p-type zone (Fig. 19, right), so that 
 

      n pD E D E D E   (91) 

 

and then use the formulas of Drude. 

It has to be emphasized that there is no need for 

such ingenuity, because (59) and (62) are applied in all 

cases and correctly reflect the physics of conduction. 

 

18. IS THE CONDUCTIVITY PROPORTIONAL TO 

THE ELECTRON DENSITY?  
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Experimental measurements of the conductivity are 

often performed depending on the electron density, 

which, according to the Drude theory, related linearly, 

so that the deviation from linearity is interpreted as a 

manifestation of the dependence of the mean free path 

of energy. They do not take into account that, for non-

parabolic dispersion the mass of the current carrier 

defined as p / v may depend on the energy and thus 

lead to nonlinearity of conduction from the electron 

density. 
 

 
 

Fig. 19 – Artificial splitting of the band structure of graphene 

on the zone of n- and p-type 
 

First, we will define the electron density from the 

equation (79) 
 

  
2 3

2 3

4
2 , ,

h 3h h

p p p
n p




  
  
  

, (92) 

 

where n is the density of N / L, N / W  L and N / A  L 

for d  1, 2, and 3. Rewrite (92) as 
 

   dn p K p , (93) 

 

where the proportionality factor K  {2/h, /h2, 4/3h3}. 

Now for the conductivity (70) with (69) we have 
 

 
   

 
   2 2 1q q dn p p

K p p p
m p


    . (94) 

 

If it is known or chosen the dependence of velocity 

and time of the mean free path on the energy, and 

therefore also on the impulse, in the equations (93) and 

(94) we can get rid of dependence on the impulse and 

thus establish the link between the conductivity σ and 

the electron density n. 

For example, in the case of graphene, E  ± v0p, the 

rate dE / dp is constant and equal to v0, and is inde-

pendent of the impulse. Assuming the free path time 

independent of energy, the dependence of the conduc-

tivity on the electron density from the equations (93) 

and (94) and considering equation (56) for the mean 

free path 
 

 
2 4

2, ,
2 3

D

u


 

 
   

 
  

 

we obtain the following 
 

 
2q 4

h

n
 


  (95) 

 

or with the g-factor (for graphene g  4) 
 

 
2q 4

h

gn
 


 . (96) 

 

Thus, the conductivity in graphene is obtained pro-

portional ~ √n, but not as it is usually assumed ~ n, 

and with the mean free time, independent of energy. 

Calculation with (96) with   2 m and   300 nm 

(Fig. 20) are in agreement with experimental data [21]. 
 

 
Fig. 20 – The conductivity of graphene according to (96) as the 

function of the electron density for the values of   2 m (sol-

id) and   300 nm (dotted line) is consistent with the experi-

mental data (Fig. 1 in [21]) 

 

19. QUANTIZATION OF CONDUCTANCE AND 

CONDUCTIVITY MODES 
 

Ballistic conductance is quantized 
 

 
2q

h
BG M .  

 

where for low-dimensional conductors at low tempera-

tures the number of M is integer. Above an expression 

for the number of modes 
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 (97) 

 

through the product of the density of states D and the 

electron velocity v, and quite non obvious the integer of 

expression (97). Using the expression for the dispersion 

of E(p), it is possible to give another interpretation of 

M(p) indicating the integer nature of M 

Using (67), we rewrite (97) as 
 

 
h 4 3

1, ,
2 2
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M

Lp 

 
  

 
, (98) 

 

where N (p) is the total number of states with impulse 

less than the given value of p. Using (79) we transform 

(98) to 
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h / h /

W A
M p

p p


 
 

  
  

. (99) 

 

As well as the number of states N(p) gives us the 

number of de Broglie wavelengths that stacked in the 

conductor, and M(p) gives the number of modes that 

stacked in the cross section of the conductor, and this 

number is independent of the dispersion law, since for the 

derivation of (99) any specific dispersion law was not used. 
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In practice while assessing the number N(p) and 

M(p) in the specific task it is obtained, of course, the 

fractional numbers. However, these numbers must be 

integer by the physical meaning. In large conductors at 

high temperatures the quantization of M(p) is smeared, 

however, in the meso- and nanoscale conductors the 

integer nature of the number of modes M (p) and the 

quantization of conductance are observed. Therefore, it 

is more correct to rewrite equation (99) as 
 

  
 

2
1, 2 ,

h / h /

W A
M p Int

p p


 
 

  
  

, (100) 

 

where Int {x} means the greatest integer number less 

than value of x. 

In one-dimensional conductors the number of modes 

coincides with the g-factor equaled to the number of 

valleys, multiplied by the spin degeneracy of 2. Re-

sistance of the ballistic conductors ~ M  h/q2, so that 

the resistance of the ballistic 1d-conductor is approxi-

mately equal to 25 KΩ, divided by g, that is observed 

experimentally [1]: most metals and semiconductors 

such as GaAs have g  2 and the ballistic 1d-sample 

resistance of order of 12.5 KΩ, and carbon nanotubes 

are two-valley with g  4 and their ballistic resistance 

of order of 6.25 KΩ. 

This work is the result of prof. Yu.A. Kruglyak visit 

to the «Fundamentals of Nanoelectronics, Part I: Basic 

Concepts» and «Fundamentals of Nanoelectronics, Part 

II: Quantum Models» course lectures, given on-line in 

January ― April, 2012 by prof. Supriyo Datta in the 

framework of the Purdue University initiative / nano-

HUB-U [www.nanohub.org/u]. 
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В рамках концепции «снизу – вверх» теоретической и прикладной наноэлектроники рассматрива-

ются общие вопросы электронной проводимости, причины возникновения тока и роль электрохимиче-

ских потенциалов и фермиевских функций в этом процессе, модель упругого резистора, баллистиче-

ский и диффузионный транспорт, моды проводимости, проводники n- и  p-типа и графен и дается но-

вая формулировка закона Ома. 
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В рамках концепції «знизу – вгору» теоретичної і прикладної наноелектроніки розглядаються за-

гальні питання електронної провідності, причини виникнення струму та роль електрохімічних поте-

нціалів і фермієвських функцій в цьому процесі, модель пружнього резистора, балістичний і діфузі-

онний транспорт, моди провідності, провідники n- і  p-типу та графен, дається нове формулювання 

закону Ома.  
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