Декодирование пространственных распределений источников ионизирующего излучения в системах с кодированными апертурами

А.А. Никуляк*

Научно-исследовательский и проектно-конструкторский институт «ИСКРА», 91033 Луганск, Украина

(Получено 14.05.2012; в отредактированной форме – 18.10.2012; опубликовано online 07.11.2012)

При исследовании томографических свойств систем визуализации гамма-излучения с кодированными апертурами (эмиссионные гамма-томографы) возник вопрос о влиянии процессов взаимодействия гамма-излучения с веществом на качество восстанавливаемого изображения. В данной работе описываются принципы восстановления томографической информации в системах с кодированными апертурами, приводятся результаты программно-имитационного моделирования по декодированию местоположения точечных источников ионизирующего излучения в поле зрения полного кодирования.

Ключевые слова: Кодированные апертуры, Декодирование, Программно-имитационное моделирование.

помощи

PACS numbers: 87.57.U -

перед

позиционно-

1. ОСНОВЫ МЕТОДА

Сам метод кодированных апертур хорошо изучен, разработан, и продолжает совершенствоваться. Однако первоначально он разрабатывался для целей астрофизики и гамма-астрономии, т.е. для работы с бесконечно удаленными источниками. В то же время при работе системы визуализации с кодированной апертурой в ближнем поле, в расходящихся лучах, проявляется специфическое свойство кодированных апертур – возможность томографической визуализации.

Суть метода в том, что в результате прохождения γ-излучения через кодирующую маску происходит их пространственная модуляция, и каждая точка объекта отображается на позиционно чувствительном детекторе (ПЧД) не в точку или пятно, а в конкретный рисунок – тень (см. Рис. 1).

Рис. 1 – Физическая схема прибора с кодированной апертурой

Процесс восстановления положения источников гамма – излучения при помощи кодированных апертур состоит из двух этапов. На первом этапе направление падающего гамма – излучения кодируется при

alenik-k@mail.ru

2077-6772/2012/4(3)03023(5)

чувствительным детектором (ПЧД) прозрачных и поглощающих элементов (кодирующая маска), на второй стадии зарегистрированная ПЧД картина (так называемая "тенеграмма") подвергается декодированию для получения изображения источников в фокальной плоскости. Информация о положении источника, зарегистрированная позиционночувствительным детектором в течение времени наблюдения, представляет собой суперпозицию тенеграмм от всех источников в поле зрения. При этом тенеграммы от источников, находящихся на различных расстояниях от ПЧД и кодированной апертуры, имеют различный масштаб. Фокальной плоскостью в данном случае называется плоскость, источники которой проецируют базовый фрагмент маски на всю чувствительную поверхность ПЧД.

расположенных

Процесс декодирования сводится к корреляции [1] матрицы счетности ("тенеграммы") со специальным обрабатывающим массивом G (1), элементы которого равны 1, если соответствующий элемент маски открыт, и -1 – если закрыт.

$$O_{k,l} = \sum_{i=0}^{M-1} \sum_{j=0}^{N-1} P_{i,j} \cdot G_{i+k,j+l}$$
(1)

где $O_{k,l}$ - распределение объекта, $P_{i,j}$ - матрица счетности («тенеграмма»), M, N – размерность кодирующей маски.

Матрица счетов Р является результатом интегрирования поля счетов по площади тени элемента маски, рассчитанного по формуле 2.

$$d = a \cdot (1 + f/b) = a \cdot m \tag{2}$$

где d – размер тени элемента маски, а – размер элемента маски, f – расстояние ПЧД – маска, b – расстояние маска – плоскость источников, т - коэффициент увеличения.

Размерность матрицы Р совпадает с размерностью базового фрагмента маски.

2. ОБЪЕКТ И МЕТОДЫ ИССЛЕДОВАНИЯ

Очевидно, что чем точнее сформирована матрица счетности тем качественнее будет выглядеть восстановленное изображение. На точность формирования тенеграммы наиболее сильно влияют толщина элементов маски, толщина сцинтилляционного кристалла и угол падения гамма – излучения. Более подробно эти влияния описаны в работе [2].

При построении обрабатывающего массива его элементы принимают значения 1 и -1, то есть либо элемент маски открыт, либо закрыт. Логично предположить, что в зависимости от угла прихода гамма – квантов на элемент маски количество зарегистрированных событий на ПЧД в тени конкретного элемента должно быть различным, то есть и значения элементов обрабатывающего массива будут $\leq |1|$.

Нами был проведен ряд имитационных экспериментов с помощью программы GEANT4 [3], в ходе которых производилось моделирование процессов регистрации гамма – квантов излучаемых точечным источником энергией 412 кэВ с целью выявления зависимости количества регистраций гамма – квантов ПЧД от положения источника, и его влияния на качество восстанавливаемого изображения.

Непрерывный позиционно – чувствительный детектор компьютерной модели состоит из кристалла NaI(Tl) – диаметром 12.55 см, и толщиной 1 см, световода (стекло) – толщиной 14 мм, засыпки (MgO) – 1.15 мм, 19 ФЭУ, корпуса (Al)(см. Рис. 2).

Рис. 2 – Схема ПЧД: 1 – кристалл, 2 - световод

Для кодирования информации об источнике в модели используется гексагональная кодирующая маска, с длиной большой диагонали 21 элемент. Базовый фрагмент маски показан на рисунке 3. Элемент маски выполнен из свинца, толщина – 3 мм, сторона ≈ 2,3 мм (диаметр вписанной окружности – 4 мм).

Данная маска построена по алгоритму квадратичных вычетов и обладает свойством антисимметричности при повороте на угол 60 градусов, что позволяет осуществить метод измерений «маска – антимаска». Расположение поглощающих и прозрачных элементов в такой маске обычно описывается гексагональными равномерно избыточными массивами (Hexagonal Uniformly Redundant Arrays – HURA).

Метод «маска – антимаска» [4] применяется для устранения влияния неоднородности фона детектора на результаты измерений и восстановления картины пространственного распределения. Суть метода состоит в том, что область интереса наблюдается прибором с кодированной апертурой в течение некоторого времени Т через апертуру, в которой расположена кодирующая маска.

Рис. 3 – Базовый фрагмент маски

Затем маска заменяется на антимаску – конструкцию, в которой прозрачные для излучения элементы заменены на поглощающие, а поглощающие – на прозрачные. Область интереса снова наблюдается в течение времени Т. Из результатов измерений с маской вычитаются результаты измерений с антимаской, полученные данные подвергаются корреляции с обрабатывающим массивом в соответствии с (1). Таким образом, в результирующей картине пространственного распределения устраняются все нестатистические (систематические) ошибки измерений. Их влияние остается только на уровне статистической неопределенности результата измерений.

3. ОПИСАНИЕ И АНАЛИЗ РЕЗУЛЬТАТОВ

Моделирование проводилось для источников расположенных в поле зрения полного кодирования (всего 127 позиций), которое выбирается из условия, что источники проецируют на ПЧД тень от маски таким образом, что её площадь составляет 85-90 % от площади детектора. Для моделируемой геометрии это условие соблюдается при расположении источника на расстоянии 221 мм от ПЧД, и расстоянии ПЧД – маска ≈ 121 мм.

Для каждого отдельного элемента маски подсчитывалось количество зарегистрированных в его тени гамма – квантов в зависимости от положения источника, то есть в зависимости от угла падения гамма – квантов к нормали элемента.

Так, в результате моделирования были выявлены зависимости, изображенные на рисунках 4, 5.

На рисунке 4 показана зависимость для закрытых элементов. По оси абсцисс отложены углы прихода гамма – квантов, по оси ординат – количество зарегистрированных событий, нормированных на единицу. Функция зависимости имеет вид: Декодирование пространственных распределений ...

$$P_c(\varphi) = \frac{p_1 \cdot \varphi + p_2}{q_1 + \varphi}, \qquad (3)$$

где коэффициенты $p_1 = -0.005413;$ $p_2 = 4.01;$ $q_1 = 0.7608, \varphi$ – угол прихода.

Рис. 4 – Зависимость числа регистраций от угла прихода гамма – квантов для закрытых элементов маски

На рисунке 5 показана аналогичная зависимость для открытых элементов. Функция зависимости:

$$P_o(\varphi) = \frac{p_3 \cdot \varphi + p_4}{q_2 + \varphi} , \qquad (4)$$

где коэффициенты $p_3 = -0.02397; p_4 = 4.238; q_2 = 0.802, \phi$ - угол прихода.

На рисунке 6 сравниваются приведенные выше зависимости. Как видно из рисунка – они практически идентичны.

Таким образом, можно сформировать скорректированный обрабатывающий массив элементы которого будут соответствовать значениям функций (3) и (4), что позволит сгладить ошибки формирования матрицы счетности, возникающие вследствие размытия тенеграммы, а практическая идентичность функций для открытых и закрытых элементов даёт возможность применения этого способа в методе измерений «маска – антимаска».

Рис. 5 – Зависимость числа регистраций от угла прихода гамма – квантов для открытых элементов маски

Анализируя результаты видно, что при увеличении угла количество регистраций резко падает, поэтому в предложенной геометрии не целесообразно исследовать источники расположенные под углом более 30 градусов к нормали маски.

Результаты восстановления источников находящихся в фокальной плоскости показаны на рисунках 7 и 8. В первом случае (См. Рис. 7) точечный источник располагался в ячейке поля зрения с координатами (– 28мм; 0мм), во втором (См. Рис. 8) – с координатами (28мм; 0мм). В моделируемой геометрии Размер элемента разрешения (элемента поля зрения) составляет 7 мм.

Рис. 6 – Сравнение зависимостей для открытых и закрытых элементов

Рис. 7 – Декодирование положения источника с использованием стандартного обрабатывающего массива (а) и скорректированного (б) для источника с координатами (– 28; 0) мм

Для формирования матрицы счетности использовался метод измерений «маска – антимаска». На рисунке 7а показано декодированное положения источника с использованием обрабатывающего массива с элементами 1 и -1. Четко видно положение источника, однако ложные боковые отклики несколько искажают картину действительности. Результат использования скорректированного обрабатывающего массива приведён на рисунке 76 — снижен уровень шумов и амплитуда ложных откликов. Рисунки 8а и 86 демонстрируют аналогичные результаты для симметрично расположенного источника.

Рис. 8 – Декодирование положения источника с использованием стандартного обрабатывающего массива (а) и скорректированного (б) для источника с координатами (28; 0) мм

4. ВЫВОДЫ

Применение кодированных апертур в системах для получения пространственных распределений плоских и объемных источников гамма излучения с непрерывным позиционно-чувствительным детектором даёт возможность получать изображения с достаточно высоким пространственным разрешением при высокой чувствительности, что особенно важно для целей медицинской γ-томографии, так как позволяет уменьшить время наблюдения и количество введенного в организм радиофармпрепарата. Также использование подобных систем обеспечивает возможность программной фокусировки на заданную плоскость внутри объекта.

Проведённые исследования показали, что предложенный в статье метод восстановления томографической информации с использованием скорректированного обрабатывающего массива позволяет получать более качественные изображения точечного источника, нежели с использованием стандартного обрабатывающего массива. Для того чтобы получить более точную картину и устранить шумы необходимо использовать дополнительные методы очистки изображений. Декодирование пространственных распределений ...

Decoding of the Spatial Distribution of Ionizing Radiation Sources in Systems with Coded Apertures

A.A. Nikuliak

Scientific Research and Project Designing Institute "ISKRA", 91033 Lugansk, Ukraine

In studying the properties of tomographic gamma - ray imaging systems with coded apertures, (gamma emission - tomography) raised the question of the influence of the interaction of gamma - radiation with matter on the quality of the reconstructed image. In this paper describes principles of the tomographical information reconstruction in systems with coded apertures, the results of the software - simulation of decoding the location of point sources of ionizing radiation in the field of view of the complete coding.

Keywords: Coded apertures, Decoding software simulations.

Декодування просторових розподілень джерел іонізуючого випромінювання в системах з кодованою апертурою

О.А. Нікуляк

Науково-дослідний та проектно-конструкторський інститут "ІСКРА", 91033 Луганськ, Україна

При дослідженні томографічних властивостей систем візуалізації гамма-випромінювання з кодованими апертурами (емісійні гамма-томографи) стало питання про вплив процесів взаємодії гаммавипромінювання з речовиною на якість відновлюваного зображення. В даній роботі описуються принципи відновлення томографічної інформації в системах з кодованими апертурами надаються результати програмно-імітаційного моделювання по відновленню місцезнаходження точкових джерел іонізуючого випромінювання в полі зору повного кодування.

Ключові слова: Кодовані апертури, Декодування, Програмно-імітаційне моделювання.

СПИСОК ЛІТЕРАТУРИ

- 1. E.E. Fenimore, T.M. Cannon, Appl. Opt. 17, 337 (1978).
- Е.А. Краснощеков, Праці Луганського відділення Міжнародної Академії інформатизації, №3, 25 (2011).
- 3. http://geant4.cern.ch.

 P.P. Dunphy, M.L. McConnell, A. Owens, E.L. Chupp, D.J. Forrest, J. Googins, *Nucl. Instrum. Meth. A* 274, 362 (1989).