Вплив відпалу на оптичні властивості та дисперсію показника заломлення нанометрових плівок CdS

В.В. Кусьнеж^{1,*}, Р.Ю. Петрусь¹, Г.А. Ільчук¹, О.Я. Тузяк²

 Національний університет "Львівська політехніка", кафедра фізики, вул. С.Бандери, 12, 79013 Львів, Україна
Львівський національний університет імені Івана Франка, кафедра фізики твердого тіла, вул. Драгоманова, 50, 79005 Львів, Україна

(Одержано 07.05.2012; опубліковано online 29.10.2012)

У роботі досліджено оптичні властивості ультратонких (~ 50 нм) плівок CdS, одержаних хімічним поверхневим осадженням на прозорих скляних підкладках. Розглядається вплив атмосфери (Ar₂, CdCl₂ та повітря) термічного відпалу на спектральні залежності коефіцієнтів відбивання $R(\lambda)$ та поглинання $\alpha(\lambda)$ плівок. За експериментальними характеристиками розраховано залежності коефіцієнтів екстинкції $k(\lambda)$, заломлення $n(\lambda)$, реальної $\varepsilon_1(\lambda)$ та уявної $\varepsilon_2(\lambda)$ частин оптичної діелектричної сталої плівок CdS відпалених у різних атмосферах. Визначено коефіцієнти формули Зельмейера для опису залежностей $n(\lambda)$ у видимій та ближній інфрачервоній області спектра.

Ключові слова: Напівпровідникові плівки, CdS, Відпал, Оптичні властивості, Дисперсія показника заломлення.

PACS numbers: 71.55.Gs, 81.16.Be, 68.55. - a

1. ВСТУП

Лише за останні три роки (2009-2011 рр.) сумарна потужність встановлених у світі сонячних станцій збільшилась втричі (з 22,9 до 67,4 ГВт) [1]. В даний час тонкоплівкові сонячні елементи (СЕ) вважають основною і недорогою альтернативою стандартним елементам на основі монокристалічних пластин [2]. Найбільша в світі електростанція на тонкоплівкових СЕ і 16-та (52 МВт) у списку найбільших електростанцій на базі сонячних батарей "Waldpolenz Solar Park" (Лейпціг, Німеччина) – реалізована на основі геропереходів CdS/CdTe [3]. Сьогодні максимальний ККД кращих плівкових CE CdS/CdTe становить 16,7 % [4] і знаходиться далеко від теоретичних 28-30 %. Подальше збільшення їх ефективності потребує використання нових підходів, зокрема, необхідні більш ефективні механізми поглинання світла.

Експериментальні дослідження органічних [5-6] та неорганічних [7-8] СЕ показали, що продуктивність тонкоплівкових елементів може бути значно покращена за допомогою металевих НЧ, нанесених на верхню частину фотоактивного шару. Підвищення ефективності роботи таких елементів пов'язане зі збільшенням оптичного поглинання тонкоплівковим шаром [9]. Це більш ефективне оптичне поглинання зумовлене розсіюванням на металевих НЧ [10], та його підсиленням в умовах збудження у активному шарі поверхневих плазмон-поляритонів [11, 12]. Таким чином, загальна поглинута потужність фотоактивним шаром у СЕ CdS/CdTe, що містить металеві НЧ може бути значно підвищена.

Локалізовані поверхневі плазмон-поляритони існують за умови: $\varepsilon_m(\omega) \varepsilon_d(\omega) < 0$ та $\varepsilon_m(\omega) + \varepsilon_d(\omega) < 0$, де $\varepsilon_m(\omega)$, $\varepsilon_d(\omega)$ – діелектрична проникливість металу та діелектрика, відповідно [13]. Таким чином, для виконання умов виникнення поверхневих плазмонів необхідно знати оптичні характеристики середовищ, на межі яких вони виникають. Метою роботи було визначення залежності коефіцієнтів екстинкції $k(\lambda)$, заломлення $n(\lambda)$, реальної $\varepsilon_1(\lambda)$ та уявної $\varepsilon_2(\lambda)$ частин оптичної діелектричної сталої плівок CdS та можливостей їх зміни шляхом відпалів у різних атмосферах.

2. МЕТОДИКА ЕКСПЕРИМЕНТУ

Плівки CdS одержано методом хімічного поверхневого осадження (ХПО) [14] з водного розчину CdCl₂, на попередньо підготовлену поверхню оптично однорідної скляної пластини.

З використанням растрового електронного мікроскопа РЕМ-106И («Селмі», м. Суми) досліджено морфологію поверхні та елементний склад плівок. Товщини плівок CdS визначали еліпсометром ЛЕФ-3М. Джерелом світла був He-Ne лазер (λ = 633 нм) За допомогою спектрофотометра Shimandzu UV-3600 досліджено оптичні спектри поглинання та відбивання плівок CdS у видимій та ближній інфрачервоній області спектра.

Термічний відпал плівок проведено за 673 К, протягом 60 хв у атмосферах Ar₂, CdCl₂ і повітря. Використані умови задовільняють вимоги подальшого використання плівок CdS у ролі "вікна" сонячного елемента на основі гетеропереходів з плівками CdTe, Cu(In, Ga)(Se, S)₂ [15, 16].

3. ВЛАСТИВОСТІ ПЛІВОК CdS

В процесі хімічного осадження прозорі скляні підкладки покривалися плівками світло-зеленого кольору, характерного для напівпровідникової сполуки кадмію сульфіду. Результати Х-променевого мікроаналізу підтвердили стехіометричний склад плівок. Вони узгоджуються з нашими попередніми результатами [14], де досліджено кристалічність плівок методами Х-променевої дифрактометрії.

Товщина плівок до та після відпалів залишалась незмінною та становила 47,5 ± 7,5 нм. Коефіцієнт

2077-6772/2012/4(3)03014(4)

w_kusnierz@polynet.lviv.ua

В.В. Кусьнеж, Р.Ю. Петрусь, Г.А. Ільчук, О.Я. Тузяк

екстинкції k = 0 - 0,15 та коефіцієнт заломлення n = 2,35 - 2,47 плівок до відплів визначали методом еліпсометрії за $\lambda = 633$ нм.

3.1 Поглинання та відбивання плівок

Спектри відбивання $R(\lambda)$ та поглинання $\alpha(\lambda)$ ХПО плівок CdS до та після відпалів, наведено на рис. 1.

Рис. 1 – Спектри відбивання (а) та поглинання (b) плівок CdS не відпалених (1) та відпалених за 673 К протягом 60 хв: на повітрі (2); у аргоні (3); з нанесеною плівкою CdCl₂ (4)

Для плівок за довжин хвиль випромінювання більших $\lambda \sim 490 - 530$ нм (енергіях, менших E_g матеріалу), відбувається суттєве зменшення коефіцієнта відбивання та поглинання, типове у області пропускання напівпровідників. В інтервалі довжин хвиль $\lambda \sim 800-$ 850 нм, що відповідають області фоточутливості CdTe, Cu(In, Ga)(S, Se)₂, відбивання та поглинання нетипово дещо зростають, а потім зменшуються практично до нуля. Така тенденція зберігається до довжин хвилі $\lambda \sim 1500$ нм. В області прозорості $\lambda > 490 - 530$ нм (енергіях фотонів, менших 2,53 eB) усі плівки мають високий коефіцієнт пропускання, який наближається до 80-95 %. Результати аналізу експериментальних даних показують, що оптичне пропускання плівок внаслідок відпалу збільшується: на повітрі на 5 %, у аргоні на 3 %, та зменшується з CdCl₂ на 3 % від величини пропускання невідпалених плівок. Відмінність коефіцієнта пропускання плівок відпалених за різних атмосфер, може бути обумовлена різною кристалічною та фазовою структурою цих зразків, що раніше нами спостерігалось з викристанням атомносилової і растрової мікроскопії [15].

3.2 Дисперсія показника заломлення

За спектрами відбивання та поглинання плівок кадмію сульфіду були розраховані спектральні залежності коефіцієнтів заломлення $n(\lambda)$ та екстинкції $k(\lambda)$. Відомо, що ці коефіцієнти пов'язані між собою формулою Френеля:

$$R = \frac{(n-1)^2 + k^2}{(n+1)^2 + k^2} \tag{1}$$

де $k = \alpha \lambda / 4\pi$ коефіцієнт екстинкції [17].

Звідси, розрахувавши k, можна знайти показник

заломлення матеріалу

$$n = \left(\frac{1+R}{1-R}\right) + \sqrt{\frac{4R}{(1-R)^2} - k^2}$$
(2)

Із значень коефіцієнтів заломлення та екстинкції можуть бути знайдені реальна є1 та уявна є2 частини оптичної діелектричної сталої є плівок CdS

$$\varepsilon_1 = n^2 - k^2 \tag{3}$$

$$\varepsilon_2 = 2nk \tag{4}$$

де $\varepsilon = \varepsilon_1 + \varepsilon_2 = (n + ik)^2$.

Розрахунок спектральних залежностей оптичних констант плівок CdS: показника заломлення $n(\lambda)$ та екстинкції $k(\lambda)$, реальної $\varepsilon_1(\lambda)$ та уявної $\varepsilon_2(\lambda)$ частини оптичної діелектричної сталої є, був проведений за допомогою пакетів прикладних математичних програм. Спектральні залежності відповідних коефіцієнтів наведені на рис.2 та 3.

Рис. 2 – Спектральні залежності коефіцієнта заломлення $n(\lambda)$ (а) та екстинкції $k(\lambda)$ (b) плівок CdS невідпалених (1) та відпалених за 673 К протягом 60 хв: на повітрі (2); у аргоні (3); з нанесеною плівкою CdCl₂ (4)

З рис. 2 бачимо, що оптичні константи *n* і *k* у області прозорості CdS ($\lambda > 490$ нм) зменшуються за збільшення довжини хвилі випромінювання (зниження енергії фотонів *hv*). Значення коефіцієнтів заломлення *n*, дійсної ε_1 та уявної частин діелектричної проникливості ε_2 плівок кадмію сульфіду, розраховані за довжини хвилі $\lambda = 633$ нм, яка відповідає довжині хвилі лазерного випромінювання на якій проводили еліпсометричні вимірювання приведені у таблиці 1. Для невідпалених плівок експериментальне значення показника заломлення і розраховане практично збігаються, що підтверджує правильний вибір методу розрахунку та точність його реалізації.

Для відпалених плівок значення n змінюються в інтервалі 2,169 – 2,889, тоді як значення для монокристалічного матеріалу – n = 2,479-2,496 ($\lambda = 610$ нм) є близьким до значення вихідних плівок.

Залежності коефіцієнта заломлення від довжини хвилі можна апроксимувати формулою Зельмейєра

$$n^{2}(\lambda) = 1 + \sum_{i} \frac{B_{i} \lambda_{0i}^{2} \lambda^{2}}{\lambda^{2} - \lambda_{0i}^{2}},$$
 (5)

N⁰	Атмосфера відпалу	E_g , eB	Розраховані значення, $\lambda = 633$ нм			$B_i, 10^{-5}$ HM ⁻²	λ01, нм
			n	E 1	E 2		
1.	без відпалу	2,42	2,46	6,50	0,83	1,07	504
2.	повітря	2,35	2,17	4,70	0,38	0,76	514
3.	Ar_2	2,33	2,48	6,16	0,39	0,98	504
4.	$CdCl_2$	2,41	2,89	8,34	0,64	1,06	514

Таблиця 1 – Деякі оптичні характеристики плівок CdS, відпалених у різних атмосферах

де $B_i = e^2 N_0 / (\pi mc^2) f_i$, N_0 – число осциляторів в одиниці об'єму, f_i – сила і-го осцилятора, λ_{0i} – резонансна довжина хвилі *i*-го резонансу [17]. У області власного поглинання доцільно розглядати лише один резонанс, тобто *i* = 1, оскільки вплив інших осциляторів незначний. Ця формула дуже добре описує одержані залежності $n(\lambda)$ для $\lambda > 700$ нм, квадрат коефіцієнта кореляції $R^2 \ge 0.995$. Для усіх зразків визначені коефіцієнти формули Зельмейєра (див. Таблицю 1)

Спектральні залежності реальної ε_1 та уявної ε_2 частини оптичної діелектричної представлені на рис. 3. Характер зміни реальної та уявної частин оптичної діелектричної сталої є подібним до того, що спостерігався для оптичних констант $k(\lambda)$ та $n(\lambda)$, тобто їх значення монотонно зменшуються зі збільшенням довжини хвилі.

Рис. 3 – Спектральні залежності реальної $\varepsilon_1(\lambda)$ (а) та уявної $\varepsilon_2(\lambda)$ (b) частин оптичної діелектричної постійної плівок CdS товщиною 50 нм, невідпалених (1) та відпалених за 673 К протягом 60 хв: на повітрі (2); у аргоні (3); з нанесеною плівкою CdCl₂ (4)

Уявна діелектрична стала ε_2 виявилася меншою на порядок від реальної частини ε_1 . Значення ε_1 та ε_2 , розраховані за $\lambda = 633$ нм, наведені в табл. 1. За цієї довжини хвилі реальна та уявна частини оптичної діелектричної сталої змінюються в інтервалі $\varepsilon_1 = 4,699 - 8,337$ та $\varepsilon_2 = 0,379 - 0,833$. Ці значення також непогано корелюють з відомими даними $\varepsilon_1 = 5,8$ та $\varepsilon_2 = 0,28$ для монокристалів.

4. ВИСНОВКИ

Встановлено, що завдяки термічному відпалі у різних атмосферах (Ar₂, CdCl₂ та повітря, за 673 К протягом 60 хв.) ультратонких (50 нм) плівок CdS, нанесених методом хімічного поверхневого осадження, можна змінювати у відносно широких межах їх оптичні характеристики: n = 2,169 - 2,889, $\varepsilon_1 = 4,699 - 8,337$, $\varepsilon_2 = 0,379 - 0,833$.

Вірність виконаних розрахунків залежностей $k(\lambda)$, $n(\lambda)$, $\varepsilon_1(\lambda)$ та $\varepsilon_2(\lambda)$ для відпалених плівок з використанням формул Френеля підтверджується узгодженням отриманих результатів з експериментальними, отриманими еліпсометрично.

Дисперсію показника заломлення досліджених плівок описано з використанням формули Зельмейера. Визначено відповідні коефіціенти, що дає змогу знайти числове значення n для будь-якої довжини хвилі з дослідженого діапазону.

Виконані дослідження дадуть змогу встановити умови підготовки хімічно осаджених плівок CdS для їх використання у якості вікна та діелектричного середовища у сонячних елементах з плазмонполяритонними ефектами.

Влияние отжига на оптические свойства и дисперсию показателя преломления нанометровых пленок CdS

В.В. Кусьнэж¹, Р.Ю. Петрусь¹, Г.А. Ильчук¹, О.Я. Тузяк²

¹ Национальный университет "Львовская политехника", ул. С. Бандеры, 12, 79013 Львов, Украина

² Львовский национальный университет им. И.Франка, ул. Драгоманова, 50, 79005 Львов, Украина

В работе описываются оптические свойства ультратонких (~ 50 нм) пленок CdS, полученных химическим поверхностным осаждением на прозрачных стеклянных подложках. Рассматривается влияние атмосферы (Ar₂, CdCl₂ и воздуха) термического отжига на спектральные зависимости коэффициентов отражения $R(\lambda)$ и поглощения $\alpha(\lambda)$ пленок. По экспериментальным характеристикам рассчитаны зависимости коэффициентов экстинкции $k(\lambda)$, преломления $n(\lambda)$, реальной $\varepsilon_1(\lambda)$ и мнимой $\varepsilon_2(\lambda)$ частей оптической диэлектрической постоянной пленок отожженных в разных атмосферах. Определены коэффициенты формулы Зельмейера для описания зависимостей $n(\lambda)$ в видимой и ближней инфракрасной области спектра.

Ключевые слова: Полупроводниковые пленки, CdS, Отжиг, Оптические свойства, Дисперсия показателя преломления.

. Тузяк Ж. Нано- електрон. Фіз. 4, 03014 (2012)

Effect of Annealing on the Optical Properties and the Refractive Index Dispersion of CdS Nanometer Films

V. Kusnezh¹, R. Petrus^{'1}, H. Il'chuk¹, O. Tuziak²

¹ Lviv Polytechnic National University, 12, S. Bandera Str., 79013 Lviv, Ukraine

² Ivan Franko National University of Lviv, 50, Dragomanova Str., 79005 Lviv, Ukraine

The paper describes the optical properties of CdS ultrathin (~ 50 nm) films, fabricated by the chemical surface deposition on transparent glass substrates. The influence of the atmosphere (Ar₂, CdCl₂ and air) thermal annealing on the spectral dependence of the CdS films reflection coefficient $R(\lambda)$ and absorption $\alpha(\lambda)$ was investigated. The extinction coefficient $k(\lambda)$, refractive index $n(\lambda)$, real $\varepsilon_1(\lambda)$ and imaginary $\varepsilon_2(\lambda)$ parts of the optical dielectric constant of the films annealed in different atmospheres were calculated using the experimental characteristics. The coefficients of Sellmeier equation to describe the $n(\lambda)$ dependence in the visible and near infrared spectrum were determined.

Keywords: Semiconductor films, CdS, Annealing, Optical properties, Dispersion of the refractive index.

СПИСОК ЛІТЕРАТУРИ

- 1. European Photovoltaic Industry Association, "Market Report 2011" (2012).
- 2. M.A. Green, *Third Generation Photovoltaics*, (Berlin: Springer: 2003).
- 3. http://en.wikipedia.org/wiki/Waldpolenz_Solar_Park.
- M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E. Dunlop. Solar Cell Efficiency Tables (Version 39). Prog. Photovoltaics: Research and Application 20, 12 (2012).
- A.J. Morfa, K.L. Rowlen, T.H. Reilly III, M.J. Romero, J.V. Lagemaatb, *Appl. Phys. Lett.* 92, 013504 (2008).
- S.S. Kim, S.I. Na, J. Jo, D.Y. Kim, Y.C. Nah, *Appl. Phys.* Lett. 93, 073307 (2008).
- S.W. Tong, C.F. Zhang, C.Y. Jiang, G. Liu, Q.D. Ling, E.T. Kang, D.S.H. Chan, C. Zhu, *Chem. Phys. Lett.* 453, 73 (2008).
- D.M. Schaadt, B. Feng, E.T. Yu, *Appl. Phys. Lett.* 86, 063106 (2005).
- D. Derkacs, S.H. Lim, P. Matheu, W. Mar, E.T. Yu. *Appl. Phys. Lett.* 89, 093103 (2006).
- 10. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, J. Appl.

Phys. **101**, 093105 (2007).

- M.D. Yang, Y.K. Liu, J.L. Shen, C.H. Wu, C.A. Lin, W.H. Chang, H.H. Wang, H.I. Yeh, W.H. Chan, W.J. Parak, *Opt. Express* 16, 15754 (2008).
- 12. B.J. Soller, D.G. Hall, J. Opt. Soc. Am. 19, 2437 (2002).
- 13. В.В. Климов, *Наноплазмоника*, (Москва: ФИЗМАТ-ЛИТ: 2009).
- L.A. Kosyachenko (Ed.), Solar Cells Thin-Film Technologies (Rijeka: InTech: 2011).
- Г.А. Ільчук, В.В. Кусьнеж, Р.Ю. Петрусь, О.Я. Тузяк, П.Й. Шаповал, С.В. Токарев, І.Т. Когут, *ФХТТ* 12 No4, 908 (2011).
- Landolt-Börnstein, Semiconductors; II-VI and I-VII Compounds; Semimagnetic Compounds, Group III, Vol. 41b, (Berlin, Heidelberg, New York: Springer-Verlag: 1999).
- Я.О. Довгий, І.В. Кітик, Електронна будова і оптика нелінійних кристалів: Монографія, (Львів: Світ: 1996).