Особливості формування шарів пористого кремнію модифікованих HCl і HBr в контексті оптичних властивостей

Є.І. Зубко^{*}

Запорізька державна інженерна академія, вул. Добролюбова, 22, Запоріжжя 69000, Україна

(Одержано 23.11.2011, у відредагованій формі – 20.05.2012, опубліковано online 04.06.2012)

Досліджено спектри пропускання, відбиття та коефіцієнт заломлення шарів поруватого кремнію, виготовленого в розчинах HF(48 %):HCl:H₂O і HF(48 %):HBr:H₂O за умов освітлення зразка і без нього. Встановлено, що шари виготовлені в розчині HF(48 %):HBr:H₂O = 16 : 2 : 80 ваг. ч. методом електролітичного анодування мають найкращі антивідбивні характеристики і менше оптичне пропускання.

Ключові слова: поруватий кремній, модифікація, фотоанодування, відбиття.

PACS number: 78.20. – e

1. ВСТУП

Наноструктуровані матеріали останнім часом викликають значний інтерес дослідників. Це пов'язано з нетиповістю їх властивостей в порівнянні з об'ємним матеріалом. Одним із таких матеріалів є поруватий кремній (ПК), який отримують зазвичай за допомогою електролітичного анодування [1]. При достатньо високій поруватості (≥ 50 %) він представляє собою систему взаємопов'язаних між собою кремнієвих нанокристалітів, поверхня яких відкрита для взаємодії з іншими молекулами [2]. Відомі роботи, у яких досліджується вплив сорбованих у пори поруватого кремнію молекул, що проявляють акцепторні властивості, на процеси безвипромінювальної рекомбінації. Зокрема, на молекули йоду [3],аміаку [2], діоксиду азоту та піридину [4], Br₂, I₂, KCl, KI [5]. Відзначимо, що дослідження адсорбції молекул галогенів у ПК важливо для розробки нових високочутливих газових сенсорів, сонячних елементів, оптичних і біомедичних застосувань.

Хоча на цей час властивості ПК достатньо висвітлені в літературі [6-12]. Дослідженню оптичних характеристик ПК присвячені роботи [7]. Але за умов модифікації поверхні ПК багато робіт висвітлюють лише структурні і електричні характеристики поверхні ПК [14-16]. Тому винятково важливим представляється з'ясування ролі модифікаторів-галогенів в дослідженнях оптичних властивостей одержаних шарів ПК.

2. МЕТА РОБОТИ

Дослідження оптичних властивостей шарів ПК модифікованих HCl I HBr за умов освітлення зразка і без нього.

3. ОСНОВНИЙ МАТЕРІАЛ І МЕТОДИКА ДОСЛІДЖЕНЬ

У роботі використовувалися пластини монокристалічного кремнію марки КДБ-4,5 з орієнтацією (100) р-типу товщиною 300 мкм. Концентрація легуючої домішки бору становила 1·10¹⁶ см⁻³. Анодне травлення проводили при кімнатному освітленні зразка і при освітленні зразка лампою розжарування потужністю 500 Вт. Оцінка поруватості зразка вимірювалась гравіметричним методом. Зразки виготовлені в розчинах НF (48 %):H₂O:HBr = 16:80:7 – 16:80:2 ваг. ч. і HF (48 %):H₂O:HCl = 16:80:7 – 16:80:2 ваг. ч. в плині від 30 секунд до 30 хвилин при щільності струму 30 мкА/см².

За допомогою однопроменевого спектрофотометра «Specord-80» були зареєстровані оптичні спектри відбиття в спектральному діапазоні 190-1100 нм. Прилад використовує джерело світла дейтерієву і галогенову лампи. Похибка вимірювання складає \pm 20 %.

Оптичні спектри пропускання реєструвались за допомогою спектрофотометра типу СФ-46. Як зразковий фотодетектор використовували діод ФД-24К. На довжині хвилі $\lambda = 0,9$ мкм монохроматична чутливість фотодіода складала 0,57 А/Вт. Середня квадратична погріппність виміру становила ± 5 %. Виміри проводили з кроком 10 нм. Виміри робили в режимі високого спектрального дозволу при розмірі вхідної щілини, рівної 0,25 мм. Похибка вимірювання довжини хвилі λ_i була не більше ± 1 %, а коефіціента відбиття – не більше ± 5 %.

Коефіцієнт заломлення розраховувався на основі спектрів пропускання або відбиття, отриманих в інфрачервоному і видимому діапазоні довжин хвиль [7]. Згідно з цією методикою були визначені попередні значення коефіцієнтів заломлення n':

$$n' = 1/(2d\Delta v)$$

де n' – коефіцієнт преломлення; d – товщина шару; Δv – різниця між хвильовими числами, що відповідають 2 сусіднім максимальним (max) або мінімальним (min) в спектрі.

Далі визначали номер інтерференційного піка:

$$m_{o,e} = [2dn'_{o,e}/\lambda]$$

де $n = m\lambda/2d$ (для максимума); $n = (m + 1/2)\lambda/2d$ (для мінімума); m – порядок інтерференційного максимума; λ – відповідна йому довжина хвилі.

Для використання в сонячних елементах у якості антивідбивного покриття необхідно провести аналіз оптичних характеристик шарів ПК, таких як спектри пропускання, відбиття і коефіцієнт заломлення ПК.

* evgeniya-zubko@mail.ru

2077-6772/2012/4(2)02036(12)

4. АНАЛІЗ ОТРИМАНИХ РЕЗУЛЬТАТІВ

Спектри пропускання у діапазоні довжин хвиль 600-1200 нм зразків ПК, що виготовлені в електролітах HF:H₂O:HBr і HF:H₂O:HCl зображені на рис. 1 і рис. 2 відповідно.

Рис. 1 – Спектри пропускання ПК, виготовленого в розчині HF:H₂O:HBr без фотоанодування (СК4, СК7, СК8, СК5) і з фотоанодуванням (БК8, БК6, БК1)

Отримано, що в результаті збільшення концентрації НВг в розчині в спектрах пропускання ПК спостерігається збільшення інтенсивності (рис. 1), що пов»язано зі знаходженням на поверхні молекул брому. Як видно з рис. 1 мінімальне значення пропускання (0,001 %) набуває при мінімальних значеннях концентрації НВг, яка становить 2 ваг.ч., і найбільшому часі травлення – 30 хвилин.

Рис. 2 – Спектри пропускання ПК, виготовленого в розчині HF:HCl:H₂O без фотоанодування (ЧБК4, ЧБК3, ЧБК6) і з фотоанодуванням (ЧБК8, ЧБК9, ЧБК11, ЧБК12, ЧБК13)

Аналогічна тенденція спостерігається для зразків ПК, які виготовлені в електролітах HF:H₂O:HCl (рис. 2). При найбільшому часі анодування (30 хв.) інтенсивність спектрів пропускання найменша, так як товщина шару ПК найбільша. Збільшення концентрації HCl незначно впливає на спектри пропускання.

Пластини з поверхневим опором 400-500 Ом мали стабільні піки пропускання 0,018 % у діапазоні 650-1000 нм.

Найбільше пропускання (0,02 %) мали зразки зі значною концентрацією дефектів 10^9 см⁻³, які представляли собою скупчення дефектів А-типу [16, 17] і мали вигляд спіралі в поперечному перетині монокристалічної пластини кремнію.

При розрахунках коефіцієнту заломлення зі спектрів пропускання отримано дані щодо залежності поруватості і коефіцієнту заломлення для зразків ПК за умов фотоанодування і без нього (рис. 3), які свідчать, що фотоанодування значно впливає на зміну властивостей ПК. Коефіцієнт заломлення і поруватість зразків, виготовлених в розчині HF:HCl:H₂O за умов фотоанодування змінюється від 0,8 до 3,3 та 40-82 % відповідно; від 0,83 до 2,75 та в межах 42-86 % – для зразків, виготовлених в розчині HF:HBr:H₂O; без фотоанодування - від 0,5 до 1,5 та в межах 32 – 66 % для зразків, виготовлених в розчині HF:HCl:H₂O; від 0,7 до 0,98 та в межах 67-80 % для зразків, виготовлених в розчині HF:HBr:H₂O.

Рис. 3 – Залежність коефіцієнта преломлення від поруватості: для зразків, виготовлених в розчині HF:HBr:H₂O без фотоанодування (а), при фотоанодуванні (б); для зразків, виготовлених в розчині HF:HCl:H₂O без фотоанодування (с), при фотоанодуванні (д)

Аналіз зразків за часом анодування дає наступний розподіл за коефіцієнтом заломлення і поруватістю (рис. 4). Коефіцієнт заломлення в межах 3,3-1,7 характерний для зразків, що виготовлені протягом 1 хвилини, в межах 1,5-0,8 – для зразків виготовлених протягом 10 хвилин, 0,7-0,55 – для зразків анодованих протягом 30 хвилин.

Рис. 4 – Залежність коефіцієнта заломлення від поруватості зразка, виготовленого в розчині HF:HCl:C₂H₅OH:H₂O при фотоанодуванні (назва залежностей є часом анодування зразка, кількість хвилин)

Експериментальні оптичні спектри відбиття для шліфованої поверхні монокристалічного кремнію (а), для зразків виготовлених в розчинах HF(48%): $C_2H_5OH:H_2O = 16:4:80$ (е), $HF(48\%):HCl:H_2O = 16:7:80$ (в), $HF(48\%):HCl: H_2O = 16:2:80$ (г), $HF(48\%):HBr:H_2O =$ 16:2:80 (д), $HF(48\%):HBr:H_2O = 16:7:80$ (б) наведено на рис. 5. Особливості формування шарів модифікованих...

Рис. 5 – Спектри відбиття для шліфованої поверхні монокристалічного кремнію (а), для зразків виготовлених в розчинах HF(48 %):C₂H₅OH:H₂O = 1,6:0,4:8,0 ваг. ч. (е), HF(48 %):HCl:H₂O = 1,6:0,7:8,0 ваг. ч. (в), HF(48 %):HCl:H₂O = 1,6:0,2:8,0 ваг. ч. (г), HF(48 %):HBr:H₂O = 1,6:0,2:8,0 ваг. ч. (д), HF(48 %):HBr:H₂O = 1,6:0,7:8,0 ваг. ч. (б)

Найкращі результати в усій області дослідження антивідбиттєвих втрат показали зразки виготовлені в розчині HF(48 %):HBr:H₂O = 16:2:80 ваг. ч. При цьому слід зазначити, що в області $\lambda \sim 650$ нм спостерігаються мінімальні втрати на відбиття.

Як відомо [11], ПК при контакті з повітрям може суттєво змінювати свої властивості. Тому для ефективного практичного використання у якості антивідбивного покриття сонячного елемента необхідно провести дослідження стабільності відбивних характеристик поверхні ПК в процесі старіння. На рис. 6 зображено спектри відбиття ПК через день після його формування, та через півроку перебування на повітрі.

Як видно з рис. 6 для характеристик зразка через півроку можна зазначити, що проявляються ті ж самі закономірності в спектральній залежності коефіціенту відбиття. Протягом часу спостерігається погіршення відбивних характеристик (~15 %) шарів ПК.

Рис. 6 – Зміна антивідбиттевих характеристик під час старіння на повітрі: зразок через день після формування (б); зразок через півроку (а)

5. ВИСНОВКИ

В ході проведення роботи визначено, що найменші антивідбиттєві характеристики і пропускання мали шари ПК, одержані в розчині HF(48 %):HBr:H₂O = 16:2:80 ваг. ч.

Аналіз зразків за часом анодування дає розшарування на ділянки за коефіцієнтом преломлення. Перша ділянка коефіцієнта преломлення в межах 3,3-1,7 характерна для зразків, які були виготовлені в плині 1 хвилини, друга ділянка в межах 1,5-0,8 – для зразків виготовлених в плині 10 хвилин, третя ділянка (0,7-0,55) – для зразків анодованих в плині 30 хвилин.

При старінні зразка спостерігається погіршення відбиттєвих характеристик (~15%).

Formation Features of the Porous Silicon Layers Modified by HCl and HBr in the Context of Optical Properties

E.I. Zubko

Zaporozhye State Engineering Academy, 22, Dobrolubova Str., Zaporozhye 69000, Ukraine

Transmission and reflection spectra, refraction factor of the porous silicon layers produced in HF(48%): HCl:H₂O and HF(48%):HBr:H₂O solutions are investigated by the sample illumination and without it. It is established that layers produced by electrolytic anodizing in HF(48%):HBr:H₂O = 16:2:80 mass% solution have the best antireflective characteristics and smaller optical transmission than other samples.

Keywords: Porous silicon, Modification, Photoanodizing, Reflection.

Особенности формирования слоев пористого кремния, модифицированного HCl и HBr, в контексте оптических свойств

Е.И. Зубко

Запорожская государственная инженерная академия, ул. Добролюбова, 22, Запорожье 69000, Украина

Исследованы спектры пропускания, отражения и коэффициент преломления слоев пористого кремния, изготовленного в растворах $HF(48\%):HCl:H_2O$ и $HF(48\%):HBr:H_2O$ при условиях освещения образца и без него. Установлено, что слои изготовленные в растворе $HF(48\%):HBr:H_2O = 16:2:80$ мас.% методом электролитического анодирования имеют наилучшие антиотражательные характеристики и меньшее оптическое пропускание.

Ключевые слова: пористый кремний, модификация, фотоанодирование, отражение.

СПИСОК ЛІТЕРАТУРИ

- А.Н. Образцов, В.А. Караванский, Х. Окуши, X. Ватанабе, *ФТП* 32 No8, 1001 (1998) (А.N. Obraztsov, V.A. Karavanskii, H. Okushi, H. Watanabe, *Semiconductors* 32, 896 (1998)).
- А.В. Павликов, Л.А. Осминкина, И.А. Белогорохова, Е.А. Константинова, А.И. Ефимова, В.Ю. Тимошенко, П.К. Кашкаров, *ФТП* **39** No11, 1385 (2005) (A.V. Pavlikov, L.A. Osminkina, I.A. Belogorokhov, E.A. Konstantinova, A.I. Efimova, V.Yu. Timoshenko, P.K. Kashkarov, *Semiconductors* **39**, 1338 (2005)).
- К.В. Захарченко, В.А. Караванский, Г.Е. Котковский, М.Б. Кузнецов, А.А. Чистяков, *Письма в ЖЭТФ* 73 No10, 578 (2001) (K.V. Zakharchenko, V.A. Karavanskii, G.E. Kotkovskii, M.B. Kuznetsov, A.A. Chistyakov, *JETP Lett.* 73, 510 (2001)).
- Е.А. Константинова, Ю.В. Рябчиков, Л.А. Осминкина, А.С. Воронцов, П.К. Кашкаров, *ФТП* 38 No11, 1386 (2004) (Е.А. Konstantinova, Yu.V. Ryabchikov, L.A. Osminkina, A.S. Vorontsov, P.K. Kashkarov, *Semiconductors* 38, 1344 (2004)).
- В.В. Болотов, Ю.А. Стенькин, Н.А. Давлеткильдеева, О.В. Кривозубов, И.В. Пономарева, *ФТП* **43** No1, 100 (2009) (V.V. Bolotov, Yu.A. Sten'kin, N.A. Davletkil'deev, O.V. Krivozubov, I.V. Ponomareva, *Semiconductors* **43**, 92 (2009)).
- Л.А. Головань, В.Ю. Тимошенко, П.К. Кашкаров, УФН 177 No6, 619 (2007) (L.A. Golovan, V.Yu. Timoshenko, P.K. Kashkarov, Phys.-Usp. 50, 595 (2007)).
- 7. Л.А. Балагуров, В.Ф. Павлов, Е.А. Петрова, Г.П. Боронина,

ΦΤΠ **31** No8, 957 (1997) (L.A. Balagurov, V.F. Pavlov, E.A. Petrova, G.P. Boronina, *Semiconductors* **31**, 815 (1997)).

- А.Н. Образцов, В.Ю. Тимошенко, Х. Окуши, X. Ватанабе, ФТП 33 No3, 58 (1999) (А.N. Obraztsov, V.Yu. Timoshenko, H. Okushi, H. Watanabe, Semiconductors 33, 323 (1998)).
- М.П. Компан, И.Ю. Шабанов, *Письма в ЖЭТФ* 50 No10, 678 (1994) (М.Р. Котрап, I.Yu. Shabanov, *JETP Lett.* 50 No 10, 678 (1994)).
- Л.П. Кузнецова, А.И. Ефимова, Л.А. Осминкина, Л.А. Головань, В.Ю. Тимошенко, П.К. Кашкаров, *ФТТ* 44 No5, 780 (2002) (L.P. Kuznetsova, A.I. Efimova, L.A. Osminkina, L.A. Golovan', V.Yu. Timoshenko, P.K. Kashkarov, *Phys. Solid State* 44, 811 (2002)).
- 11. М.М. Мельниченко, Вісник КУ. С.: ФМН 2, 247 (2009).
- А.И. Белогорохов, Л.И. Белогорохова ФТП 33 No2, 198 (1999).
- L. Remache, A. Mahdjoub, E. Fourmond, J. Dupuis, M. Lemiti, *International Conference on Renewable Energies* and Power Quality (ICREPQ'10) Granada (Spain), (2010).
- A. Ramizy, J. Aziz, Z. Hassan, K. Ibrahim, *Microelectron*ics International 27 No2, 117 (2010).
- S.A. Boden, D.M. Bagnall, *Prog. Photovolt: Res. Appl.* 17 241 (2009).
- С.Я. Швець, Ю.В. Головко, С.І. Зубко, Теория и практика металлургии 80-81 No3-4, 90 (2011).
- 17. С.І. Зубко, К.Л. Дикий, Металургія 23, 128 (2011).