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The dynamic system described by the Langevin equation with two cross-correlated 

Gaussian white noises is considered. The non-equilibrium probability distribution 
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1. INTRODUCTION 
 

Nonlinearity and noise can result physical and other systems in the ordering. 
Stochastic resonance [1], directed transport [2], noise-induced non-equilib-
rium transitions [3], etc. are the examples of phenomena. The latter can be 
observed in strongly non-equilibrium open systems, which interact with a 
fluctuating environment. Strong non-equilibrium leads to the nonlinearity of 
the corresponding dynamic equations of the system, where the effect of a 
fluctuating environment is taken into account by the use of the noise with 
given statistical characteristics. 
 The so-called unimodal-bimodal noise-induced transition belongs to non-
equilibrium transitions. It takes place if stationary probability density of the 
system is smoothly changed from the function with one maximum to the 
function with two maxima as the noise intensity smoothly increases above 
the critical value. In this case maxima of the probability density correspond 
to the system phases, maximum points – to the ordering parameter, and 
noise intensity – to the control parameter. That is, the mentioned transition 
resembles classical phase transitions and has some their peculiarities, namely, 
the critical indexes, critical slowing down [3]. 
 Not only the external fluctuations, but also the internal ones induced by 
the thermal motion of the structural units of the system are essential for 
micro- and nanosystems. Their combined influence on the system can be taken 
into account by the use of two cross-correlated noises with known statistical 
characteristics. Within the approximation of two Gaussian white noises the 
authors of [4] investigate a relatively simple dynamic system. They find the 
exact expression for the equilibrium probability density of the system, show 
that due to the cross-correlation these noises can induce unimodal-bimodal 
transition, and each noise separately or non-correlated noises can not induce 
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such transition. The critical index for the dependence of the ordering parame-
ters on the control ones, which is equal to its classical value, is also calcu-
lated. In the present work for the mentioned dynamic system the non-equi-
librium probability density is found by the numerical methods, and using it 
the dynamics of non-equilibrium transition induced by the cross-correlated 
noises is studied near the critical point. 
 
2. THE MODEL 
 

We consider the dynamic system described by one state parameter, which 
depends on the time only. The dimensionless Langevin equation in the Stra-
tonovich calculus takes the form [4] 
 

 1 1 2 2( ) ( ( )) ( ( )) ( ) ( )x t f x t g x t t t , (1) 
 

where x(t) is the system state parameter; x(0)  0; dot is the time derivative; 

f(x) is the deterministic force; g(x) is the amplitude of multiplicative noise 

fluctuations; 1(t) and 2(t) are the Gaussian white noises with zero mean 

values, intensities 2
1  and 2

2 , and correlation functions 
 

( ) ( ) ( )i it t t t  (i  1, 2),   1 2( ) ( ) ( )t t r t t ; 
 

angle brackets denote averaging over ensemble of noise realizations; r is the 

cross-correlation coefficient of the noises, r   1; (t) is the Dirac delta-function. 

 Eq. (1) can describe, for example, non-equilibrium processes in ballast re-
sistor [5], directed transport of Brownian particles [6], stochastic resonance 
in nonlinear rotator (under the condition that function f is also explicitly 

time-dependent) [17], and other physical processes, where noise cross-corre-
lation plays an important role [4] (and references in this article). Further we 

assume that f(x)  – ax, i.e., deterministic force is linear and restoring one 

with the parameter а (а > 0); g(x)  – x2/(1 + x2), amplitude of fluctuations 

in the vicinity of zero (the stable point in deterministic dynamics) is quad-
ratic, and it is constant for large x. Just in this case, the system described 

by Eq. (1) demonstrates non-equilibrium transition induced by the cross-corre-
lated noises as it was shown in [4]. Expression for the equilibrium probability 
density can be written as 
 

 
2

1
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x x z z
r

z z

, (2) 

 

where C is the normalization constant;   – 2/ 1. Critical parameters, which 

determine the condition of non-equilibrium transitions, are found from the 

equation r 1 2  a. 

 
3. ALGORITHM OF THE NUMERICAL EXPERIMENT 
 

Algorithm of the numerical experiment is based on the method of statistical 
testing (the Monte-Carlo method) [8]. 



 
 
 
 THE DYNAMICS OF NON-EQUILIBRIUM TRANSITIONS INDUCED … 65 

 We use the Fokker-Planck equation [4] and write a Langevin equation in 
the Ito calculus, which is statistically equivalent to the Langevin equation 
(1) in the Stratonovich calculus 
 

2
1

1 2 1 1 2 2( ) ( ( )) ( ( )) ( ( )) ( ( )) ( ( )) ( ) ( )
2 2

r
x t f x t g x t g x t g x t g x t t t , 

 

where the stroke denotes the derivative with respect to the coordinate. We 
apply the Euler method to the last equation, and the difference scheme for 
Eq. (1) takes the form 
 

 
2
1

1 1 2 1 1 2 2( ) ( ) ( ) ( ) ( )
2 2

i i i i i i i i i

r
x x f x g x g x g x t g x W W , (3) 

 

where t is the time sampling step, ti+1  ti + t; W1i and W2i are the 

increments of the Wiener processes, whose values can be obtained from the 

formulas 1 1i iW t  and 2 2i iW t . Here ξ1i and ξ2i are the cross-corre-

lated random quantities with the correlation coefficient r distributed by the 

normal law with zero mean value and unit dispersion. To generate the corre-
lated values of this pair of quantities we use the formula [10] 
 

2
2 1 1i i ir r , 

 

where 1i and i are the independent Gaussian quantities generated by the 

library functions. 
 Difference scheme (3) is used to find N random realizations of the system 

state parameter x(t) in the time domain [0, tm]. They are used to calculate 

the non-equilibrium probability density of the system p(x, t) by the formula 
 

 ( , )
j

j i

N
p x t

N x
, (4) 

 

where Nj is the number of realizations, which are in the interval [xj, xj + Δx) 

in the time moment ti; Δx is the space sampling step. This formula can be 

also used to find the equilibrium probability density p(x), which is determi-

ned for the time moment tm. And the condition tm >> a–1, where a–1 is the 

system relaxation time, should hold. 
 
4. RESULTS AND DISCUSSION 
 

Numerical experiment is carried out for the following fixed parameters of the 

system: coefficient of linear restoring force, a  1; intensity of additive noise, 
2
2 4 ; cross-correlation coefficient, r  0,9. Intensity of multiplicative noise 

is varied, i.e., this parameter is taken to be the control one. Its correspon-

ding critical value is 1cr  a/(r 2)  0,56. Parameters of the algorithm of the 

numerical experiment are: t  0,01; x  0,02; tm  5; N  108 (if it is not 

specified differently in the caption). 
 In Fig. 1 we show plots of the equilibrium probability density p(x) obtained 

according to the exact expression (2) and algorithm of the numerical experi-

ment. At 1 < 1cr p(x) is the unimodal function with the global maximum 
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in the point x  0 (Fig. 1a), the most probable state of the system in stocha-

stic dynamics corresponds to the stable point in deterministic dynamics. At 

1 > 1cr equilibrium probability density is the bimodal function with two 

local maxima of the same height and one local minimum at zero (Fig. 1b), 
the most probable states of the system do not correspond any more to the 

stable point in deterministic dynamics. Therefore, at 1  1cr the unimodal-

bimodal transition induced by the cross-correlated noises occurs. 
 
 
 
 
 
 
 
 
 
 
5. CONCLUSIONS 
 

 
 
 
 
 
 
 
 
 
 
 As seen from Fig. 1, numerical results agree well with the analytical ones 
both qualitatively and quantitatively. This implies the correctness of the pro-
posed algorithm of the numerical experiment, and possibility of its further 
application for the calculation of the non-equilibrium probability density of 
the system, whose exact expression can not be obtained analytically. 
 In Fig. 2 we show the temporal evolution of the non-equilibrium probability 

density of the system to the equilibrium one for the case 1  2 ( 1 > 1cr). 

At the initial time moment, probability density is the delta-peak at zero, 

p(x)   (x), i.e., it is the unimodal function. After some critical time tcr it 
becomes a plane with the double maximum (curve 2, Fig. 2), then it is trans-
formed into the bimodal function with two maxima, which are the most 
expressed for the equilibrium probability density (curve 4, Fig. 2). 
 Using values of the non-equilibrium probability density at different values 

of the control parameter 1, which are larger than 1cr, we find the critical 

time. For this purpose we plot the temporal evolution of the probability den-
sity maximum points, which determine the ordering parameter (Fig. 3). It is 
seen from this figure that when the control parameter tends from above to 
the critical one, the time of change of the initially unimodal probability den-
sity to the bimodal one increases, i.e., system remains longer and longer in 

the intermediate state xm  0. This implies the critical slowing down of the 

non-equilibrium transition dynamics. 

а

x-4 -2 0 2

p(x)

0,0

0,1

0,2

0,3

-4 -2 0 2

0,0

0,1

0,2

0,3

x

p(x)

б

Fig. 1 – Equilibrium probability density. Analytical results are represented by the 

firm line, numerical results – by the crosses.  1  0,2 (a); 1  2 (b) 
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5. CONCLUSIONS 
 

The numerical experiment for the dynamic system excited by two Gaussian 
white noises is performed. The values of the equilibrium probability density 
are obtained. It is established that the system demonstrates unimodal-bimodal 
transition induced by the cross-correlated noises in full accordance with the 

Fig. 2 – Evolution of the non-equilibrium probability density. 
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Fig. 3 – Evolution of the maximum points. 1 – 1  2,5; 2 – 1  2;  
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results obtained by exact analytical methods in Ref. [4]. The non-equilibrium 
probability density, which can not be calculated by exact methods, is found. 
The temporal evolution of its maximum points, which determine the ordering 
parameter of the transition, is studied. It is established that the time of 
change of the initially unimodal probability density to the bimodal one in-
creases as the control parameter decreases to the critical value. This implies 
the critical slowing down of the non-equilibrium transition dynamics. This 
feature supplements the analogy of unimodal-bimodal transition in the con-
sidered system with classical phase transitions. The proposed algorithm of 
the numerical experiment can be used in the following when investigating 
the similar systems. 
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