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presented. The problem is formulated in the form of a set of the first kind singular 

integral equations, which are transformed for application of the Raleigh method. This 
method separates the basic types of quasi-transverse electromagnetic waves. At first 

the electrostatic approach is examined in details. Then the dispersion additional terms 
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1. INTRODUCTION 
 

The one of the oldest methods – the small parameter method or perturbation 
method connected with the Raleigh name [1, 2] – is related to the rigorous 
methods used in electrodynamics. It was successfully used in the case of a 
single open microstrip line (MSL) and their certain system [2, 3]. In the 
present paper we propose to use the Raleigh method for the investigation of 
electromagnetic waves in prefractal MSL system [4-6]. Topicality of the 
work follows from the fact that use of fractal models in different fields of 
human activity leaves far behind their theoretical developments. As an 
example, one can consider the practical use of a fractal antenna in Boston by 
the American engineer N. Cohen. As one of the Internet sites shows, the 
figure he has created was fabricated from aluminum foil in the shape of a 
certain stage of the construction of the Koch snowflake; afterwards it was 
glued on a paper and attached to the receiver. It was found that such an 
antenna operates well and can replace the external one which was forbidden 
at that time. Though the physical principles of its operation have not been 
studied yet, this did not interfere with the start of a business and serial 
production of prefractal antennas. 
 As for the use of the term “fractal”, in the given paper it denotes a set 
with the topological dimension, which is strictly less than the Hausdorff (or 
fractal) dimension [6, 7]. This object is perfect, and therefore only certain 
approximations are usually used in the modeling. In particular, the second-
fourth stages of the construction of such classical fractals, as the Gilbert 
curve, Koch snowflake, Sierpinski carpet and napkin [8, 9] are used while 
modeling in electrodynamics. Therefore it is appropriate to use the term “pre-
fractal” models in contrast to the real “fractal” models while investigating 
the dynamic systems, chaos, and clusters [10]. 
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2. STATEMENT OF THE PROBLEM 
 

We consider a system of open asymmetric strip lines with common dielectric 
base where strips are placed in conformity with the line segments which 
form a certain stage of the construction of the perfect Cantor set (PCS) with 
variable fractal dimension [6]. Here we will use the principle of the PCS 
construction, according to which the initial object (creator) has three equal 
segments. In Fig. 1 we present the right part of the MSL system, which cor-
responds to the PCS creator. While constructing this self-similar fractal, a 
number of segments at each step is tripled, i.e., there will be 3m of them at 
the m-th step, and the size of each segment quickly decreases. If continue 
the process infinitely, a perfect set will be formed. The Hausdorff dimension 
of this set leads to the expression d   ln3/[ln(1 + / )], where  and  are 
the coordinate of the right strip center and its half-width normalized to the 
dielectric base thickness d, respectively. 

 
 

Fig. 1 – Cross-section of the MSL system 
 

 Thus, the system of 3m classical open MSL with common dielectric base is 
considered and the electromagnetic waves propagating in this structure are 
investigated. To find their characteristics the mathematical models in the 
form of the systems of the first-order integral equations (IE) are used [3] 
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2 2 2w ;   kd  2 d/  ;   hd;  is the dielectric constant of the 

system base; k is  the wave number of  the free  space;  h is the propagation 
constant of electromagnetic wave. There are factors in denominators of the 
integration functions, which define the surface waves in the shielded dielec-
tric waveguide (the same structure, but without a strip grating). 
 Due to the correlation between kernels R(u) – T(u)  S (u) – 2 P(u), equa-
tions (1) can be transformed to the simpler ones 
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where there is a new unknown function 
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They will be equivalent to the equations (1) if the following conditionds hold: 
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where  is the coordinate of the -th strip center normalized to d. These 
conditions along with the ratios 
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following from (3) by the integration are used for determination of unknown 
constants , A m, B m. 
 The target of the given investigation is 3 m quasi-transverse electromag-
netic waves, and for them the condition  << 1 holds. Therefore, further we 
will use the method of small frequency parameter (the Raleigh method). 
 
3. THE RALEIGH METHOD 
 

In the main (zero)  approximation equations (2)  are  very simple  and can be 
written using the only one equation 0 0 0,l q t G x t dt A  x  l, which 

in the expanded form represents the following system of IE: 
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Parameters i, m,  are dimensionless geometric correlations between the 
line segments, which form a certain stage of the PCS construction [4-6]. Here 
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the main term in the expansion of the kernel of the first equation (2). It can 
be represented as a sum of the geometric progression 
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In order to see this we present the denominator of the integral in the form 
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and use the sum of the infinitely decreasing geometric progression with the 
denominator qe–2w: we obtain the series 
 

2 2( 1)

0
0 0

4
( ) cos

1

mw m w
m

m

e e
G u q wudw

w
. 

 

Let us present the difference of improper integrals of the last expression as 
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 (   0,  |u|  2). This improper integral has 

the logarithmic singularity at u  0. We will take the partial derivative with 
respect to the first parameter and use twice the formula of integration by 
parts.  As a  result,  we obtain I  ( , u)  – /( 2 + u2), and, finally, integra-
ting in the limits of [2m, 2m + 2] we have 
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that leads to the indicated sum. 
 If consider the second equation of the system (2) in zero approximation 
we  will  obtain  the  same  system  of  IE  (5),  where  we  should  take    1. In 
particular, the kernel 
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 Fig. 2a shows the comparison of G0 (u)  calculation  for    16: the solid 
line corresponds to the whole series; dots denote the sums of the first 4 and 
5  terms.  Graphical  precision  appears  after  the  first  15  terms.  Figs.  2b-2d  
compare calculations for G01(u) (firm line) and G0 (u) for three values of : 
  4 (b),   16 (c),   64 (d). 

 Numerical experiments imply fast convergence of series for the kernel 
G0 (u) with  > 1 and small difference between the kernels G01(u) and G0 (u). 
Thus, function G0 (u) has the logarithmic singularity at u  0, which appears 
as the same singularity for the diagonal kernels of IE:   0,   t. Out of 
the diagonal kernels due to the inequality i  + 2 m > 0 for   i, they will 
be confined and continuous. 



 
 
 
138 G.I. KOSHOVY  

 

Fig. 2 – Dependences of G0 (u) 
 

 To determine the main characteristics of quasi-transverse waves we use 
the known approach based on the solution of the first kind singular IE with 
known right part of equation 
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Here index n indicates the strip with the unit potential (it also changes 
from 1 to 3m) and defines certain electrostatic problem: to find the distri-
bution of the surface charge density on the strips under the condition that 
all of them, except of the n-th one, have zero potential. In other words, we 
have 3m systems of IE with almost zero right part of equation: nm is the 
Kronecker symbol. 
 Comparing systems (5) and (6), we obtain the relationship between their 
solutions in the following form: 3
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 In the matrix form we have 0 1 0( ) 0Q v Q A .  Thus,  the problem of  the 

determination of characteristics of quasi-transverse electromagnetic waves is 
transformed to the solution of the generalized problem of the eigenvalues of 
matrixes Q  and Q1 formed by the elements inq  at  > 1 and   1. These 

matrixes are symmetric and positively determined, therefore the eigenvalues 

0i are positive. They define the propagation constants of quasi-transverse 
electromagnetic waves by the approximation formulas 0i ih k . Correspon-

dingly, the distribution of the surface current density on the strips is equal 
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Here index  indicates the strip where the mentioned function is considered. 
The possibility of taking into account the transverse component of the sur-
face current density on the strips (it already depends on the frequency) is 
the significant difference of the given approach from the static one or T-
approximation [11]. As a result of this possibility, in zero approximation 
another component of the surface current density is determined by the dis-
tribution of the surface charge density in the system without dielectric base, 
i.e.,   1. To coordinate the obtained expressions for the characteristics in 
the order of small frequency parameter , it is necessary to find the disper-
sion corrections of the first order for h and jz(t). 
 
4. INVESTIGATION OF THE DISPERSION 
 

Dispersion corrections of the first order are determined by the equations 
similar to (5) 
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Therefore using the applied algorithm we find the expressions for desired 
functions 
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In this case for the defined constants 1
nA  we obtain that 
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We multiply this equality by 0
iA , sum up and use the symmetry of matrixes 

Q , Q1 and equations (7). As a result, we obtain equality 1 1 0 0( ) 0,Q A A  

from which we have 1  0 due to the positive determinacy of matrix Q1. 
Thus, dispersion corrections of the first order for h and jz(t) (in the case of 
simple eigenvalue 0i) are absent, and all expressions obtained in zero appro-
ximation have an inaccuracy of the order of O( 2ln  – 1). To improve them it 
is also necessary to consider the following approximation. 
Dispersion corrections of the second order are determined by the equations 
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G2 (u), G21(u), P0(u) are the corresponding expansion coefficients of the 
kernels of IE system (2) in the small frequency parameter 
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In the right part of equations (8) we have unknown terms 2A , which can be 

extracted from unknown functions 2 ( )iq t  using solutions (6) in such a way 

as it was done in zero approximation 
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New unknown functions 2 ( )ip t  satisfy equation (8) without unknown 2A  in 

the right part. To determine the dispersion correction of the second order 2 
we will use the corresponding correlation 2 02 01 21

i i iq q q  following from 

(4). It can be represented in another form: 
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Multiply these equation by 0
iA , sum up and use (7). As a result, we find 
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Expression for the dispersion correction of the second order can be easily 
obtained from the last equation due to the positive determinacy of matrix Q1 
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We have to note that the sum in numerator can be found without solving IE 
 



 
 
 
 INVESTIGATION OF ELECTROMAGNETIC WAVES IN … 141 

13

0 22
1 1

( ) ( ( )) ( ), 1, 1, ,3 .
m

i m
i m m

i
p t G x t dt F x x  

 

Indeed, if multiply this equality by 0 ( )q x , integrate, sum up and use the 

fact that function G0 (u) is paired and equations (5), we obtain 
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Thus, numerator in (9) is completely determined by zero approximation and 
the corresponding expansion coefficients of the kernels of IE system (2) 
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As a result, the expression 2 3
0 2 0[1 2 ] ( )h k  is obtained, and taking 

it into account we can calculate the propagation constant of quasi-trans-
verse electromagnetic waves. 
 
5. CONCLUSIONS 
 

The problem of electromagnetic wave propagation in the prefractal MSL 
system using the Raleigh method is investigated. This method separates the 
basic types of quasi-transverse electromagnetic waves. Transformation and 
simplification of the first kind singular integral equations used for the 
determination of the wave characteristics are performed. At first, zero or 
electrostatic approximation is studied in detail. Transformation of the kernel 
defined by the integral to the sum of the geometric progression is carried 
out  as  well  as  the  numerical  calculations.  Frequency  dependence  and  the  
possibility of taking into account the transverse component of the surface 
current density on the strips are manifested even in zero approximation. 
 Furthermore the dispersion corrections of the propagation constants of 
quasi-transverse waves are considered. It is proved that the first order cor-
rections with respect to the small frequency parameter  for h and jz(t) (for 
the case of simple eigenvalue of the generalized problem of eigenvalues of 
(7)) are absent. Dispersion corrections of the propagation constants, which 
are of the order of O( 2ln –1) and O( 2) and which can be determined with-
out solving the IE (8) using zero approximation and known right part of (8), 
are obtained. We have to note about the possibility of application of the 
mentioned algorithm for the determination of the arbitrary order dispersion 
corrections relative to the frequency parameter . 
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