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Two types of the combined nanocomposite coatings (Ti-N-Si /WC-Co-Cr and Ti-N-Si/ 
(Cr3C2Ni)75-(NiCr)25) of 160-320 m thickness were produced using two deposition 
techniques: the cumulative-detonation and the vacuum-arc deposition with the high-
frequency discharge. This gives the possibility (using the combined coatings) to 
restore  the  size  of  worn  areas  of  the  tools  and  demonstrate  the  high  corrosion  and  
wear resistance, to increase the hardness, modulus of elasticity, and plasticity index. 
Composition of the top coating varied from Ti  60 at.%, N  30 at.%, and Si  10 at.% 
to Ti  75 at.%, N  20 at.%, and Si  5 at.%. In the first series of coatings the 
following  phases  were  obtained:  (Ti;Si)  and  TiN  in  thin  top  coating  and  WC  and  
W2C  in  thick  bottom  coating.  The  second  series  gives  (Ti;Si)N  and  TiN  in  top  
coating; Cr3Ni2 and pure Cr in bottom coating; and small amount of Ti19O17 in the 
transition region between thin and thick coatings. For the first series the grain size 
achieved 25 nm at the hardness of 38 GPa. For the second series the grain size was 
15 nm at the hardness of 42 GÐa  4 GPa. It is shown that the corrosion resistance in 
salt solution and acid media increases with the wear decrease as a result of the 
cylinder friction over the surface of combined coating. 
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1. INTRODUCTION 
 

Nanocomposites as a class of nanomaterials are characterized by heterogene-
ous structure of formations in the material with practically non-interacting 
phases of mean sizes in the interval 5-35 nm [1-3]. As a rule, the amorphous 
matrix and inclusions of nanocrystalline phase are such structure elements. 
 Here the amorphous component is best agreed with the nanocrystalline 
surface and provides good cohesion that leads to the substantial strength 
increase, and high mechanical properties of such composite are provided by 
the small  size  of  the second phase in combination with a  good strength of  
the intergrain boundaries. Currently all nanocomposite materials are divided 
into three classes in terms of the quantity of hardness: hard nanocomposites 
with the hardness from 20 to 40 GPa, superhard nanocomposites with the 
hardness in the range of 40-80 GPa, and ultrahard nanocomposite coatings 
with very high hardness (higher than 80 GPa) [3-4]. 
 Moreover, to solve a number of problems in chemical, machine-building 
and other fields, it is necessary to restore the element size (which already 
operate in production) besides solving the direct protection functions of the 
coatings. Therefore to obtain the product size, a thick enough coating, which 
has higher physical and mechanical properties than the base metal, is depo-
sited. Alloys (powders) from Ni-Cr-Mo [5], hard alloys WC-Co-Cr [8], Cr3C2-
Ni, oxide ceramics Al2O3, Al2O3 + Cr2O3 [5, 7] are usually used in such 
coatings. Thus, if make the coating combination, which consists of at least 
two coating layers, for example, of the hard alloy based on WC-Co-Cr with 
the thickness higher than 100 m (by the cumulative-detonation or detona-
tion method), and then deposit the top thin nanocomposite coating of the 
thickness of some m, for example, from Ti-Si-N, which has higher physical 
and mechanical characteristics in comparison with thick coatings, as a result 
we obtained the combined nanocomposite coating with high physical and 
mechanical properties, such as the hardness H, the modulus of elasticity E, 
the elastic restitution We, the material resistance to plastic deformation 
Í/Å, and the plasticity index Í2/Å2 [3]. 
 Thus, the aim of the present work was to create the nanocomposite coatings 
based on Ti-Si-N and the combined nanocomposite coatings based on Ti-Si-N/ 
WC-Co-Cr and Ti-Si-N/Cr3C2-NiCr with high hardness, and to investigate their 
physical and chemical and mechanical properties. 
 
2. DETAILS OF THE EXPERIMENT 
 

Coatings were deposited on the polished steel samples with the thickness of 
4 mm and 20 mm by the vacuum-arc source with the high-frequency (HF) 
discharge. The alloyed sintered Ti cathode with Si content of 5-10 at% was 
used in the plant Bulat 3T with the vacuum 5 10–5 Pa, the cathode current 
is 100 A. The coating was deposited on another series of the cylinder steel 
samples  3  (0,3%  Ñ)  with  the  diameter  of  20  mm  and  the  thickness  of  4-
5 mm using the cumulative-detonation plant “CDS-1” [17] with the following 
parameters: the distance from the nozzle section is 65 mm, the conveying 
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speed is 14 mm/s, the number of transitions is 5, the pulse-repetition fre-
quency is f  12 Hz (for WC-Co-Cr). Thickness of the thick coating was 160-
320 m. After coating deposition the surface layer was fused by the plasma 
jet (without powder) with the eroding W electrode. Thickness of the fused 
layer was 45-60 m. Then the thin Ti-Si-N coating of the thickness of 3 m 
was deposited on the thick coating in the same plant Bulat 3T. 
 For (Cr3C2)75(NiCr)25 coating the main fraction of the powder is 37,8 m. 
The distance from the nozzle section is 70 mm, the conveying speed is 
4 mm/s, the number of transitions is 4, the pulse-repetition frequency is 
10 Hz and the capacity of the capacitor bank is Ñ  200 F, the voltage on 
the capacitor bank is 3,2 kV. 
 To analyze the element composition the following methods were used: the 
Rutherford backscattering of 4Íå+ ions with the energy of 1,76 MeV, the 
scanning electron microscopy on the plant REMMA-103M (Selmi, Ukraine), 
the X-ray diffraction on the plants DRON-3 and Advantage-8 (USA). 
 Measurements of the hardness and the modulus of elasticity were performed 
using the nanohardometer Nanoindenter G-200, MTS System Corporation, Oak 
Ridge TN (USA) with the Berkovich pyramid. The modulus of elasticity was 
determined using the curves “load-reload” by the Oliver-Pharr method [15]. 
 
3. RESULTS AND DISCUSSION 
 

The regime of detonation combustion of the fuel mixtures (and gases) is 
realized in the cumulative-detonation device. 
 

 
 

Fig. 1 – Cumulative-detonation gun (CDS-1) 
 

 Device in Fig. 1 consists of the detonation chamber 1, where the detona-
tion regime of combustion of the fuel gas mixture is realized. Moreover, the 
device contains the cumulative-detonation chamber 2, which operates with 
the fuel mixtures of any concentration, that allows to form the high-speed 
gas  jet  with  the  nitrogen  and  carbon  surplus.  The  cylindrical  nozzle  3  is  
destined for heating and acceleration of powder materials. It is made of the 
copper  tubes  and  can  have  any  configuration  of  the  cross-section  and  the  
output diameter  from 10 mm to 33 mm. In addition,  CDS-1 has unit  4 for  
the input and gas cutoff of the gas-powder mixture, the motor spark-plug 5 
for the initiation of the detonation regime of combustion, and the pipeline 
system 6 for the input of the fuel gas mixture components. The main opera-
tion difference between the cumulative-detonation device and the detonation 
one is in the following: in the first device the energy summation of the 
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detonation combustion products of the fuel mixtures from two chambers is 
realized. The energy cumulation allows to form the high-speed working gas 
flow, which has some shock waves, that provides their effective interaction 
with the powder material. This provides the efficient use of the fuel and gas 
mixture energy. 
 Velocity and temperature of the combustion products depend only on the 
combustion regime in each chamber. 
 Nozzles for the cumulative-detonation device operate no less than 1000 
hours; the high frequency of combustion initiation (15-30 Hz) in CDS-1 pro-
vides the feasibility of the quasi-continuous coating deposition technique. 
 In Fig. 2 we present the image of the surface area of the nanocomposite 
combined Ti-Si-N/WC-Co-Cr/ChS-4Z (43%Ni) coating. 
 

 
 

Fig. 2 – Image of the surface area of the nanocomposite combined Ti-Si-N/(Cr3C3-
Ni)75-(NiCr)35 coating 
 

 Thin coating is obtained using the plasma-detonation technique. Mean 
size of the roughness is 14-22 m (after fusion and deposition of the thin 
coating  by  the  vacuum-arc  source).  In  Fig.  3  we  present  the  image  of  the   
X-ray energy-dispersive spectrum, which gives the following concentrations: 
N  7,2-7,52 at%, Si  0,57 at%, Ti  76,70 at% and Fe  0,7 at%; Ni, Cr, 
Fe from the thick coating has small dispersion. 
 In Fig. 4a we show the results of the Rutherford backscattering analysis 
for the thick WC-Co-Cr coating (without thin Ti-Si-N coating), and the re-
sults obtained from the combined coating are presented in Fig. 4b. 
 As seen from the calculation results (element distribution) using the 
standard  program  [5],  the  concentration  estimates  show  that  N   30 at%, 
Si  5-6 at% and Ti  64-63 at%. It is difficult to estimate the element con-
centration from the energy spectrum obtained on the thick coating due to 
the high roughness of the coating surface prepared by the plasma-detonation 
method. 
 Results of the X-ray phase analysis obtained for the combined nanocom-
posite coating showed (see Fig. 5) that in the composition of two-layer struc-
ture the following phases are formed: (Ti;Si)N, TiN in thin nanocomposite 
film; WC, W2C. The last phases were formed in the thick coating. For the 
hardness measurements the special samples were prepared: their surface was 
firstly planished and then polished. After deposition of the thick WC-Co-Cr 



 
 
 
 PHYSICAL AND MECHANICAL PROPERTIES OF THE … 105 

 

coating the thickness of the formed layer was 120 m, and as a result of the 
polishing its thickness increased to 80-90 m. Ti-Si-N film of the thickness 
of about 3 m was deposited on the polished surface. It was found during 
the investigations that the hardness of different surface regions substan-
tially changes from 29  4 GPa to 32  6 GPa. It is probably connected with 
the following: the coating obtained by the plasma-detonation method is in- 
homogeneous over the surface due to the spread in hardness values in the 
thick coating from 17,3 GPa to 11,5 GPa. Possibly, this relation of the 
hardness values keeps after deposition of the thin Ti-Si-N coating. In this 
case the modulus of elasticity has the same non-ordinary behavior, namely, 
with the load increase it increases and becomes saturated at the indenting 
depth of indenter  200 nm. 
 

 
 

Fig. 3 – Element composition obtained using the X-ray energy-dispersive analysis from 
the surface area of the combined coating 
 

 Hardness of the thin coating deposited on the polished surface ST-45 has 
the maximum value 48 GPa, and the mean value Hm  45 GPa. As seen from 
the results, the spread in hardness values is substantially smaller than in 
the combined coating. 
 In Fig. 6 we present the dependences “load-reload” for different indenting 
depths of indenter. As seen from these dependences and performed calculations 
in accordance with the Oliver and Pharr method [15], the hardness of Ti-Si-
N coatings deposited on the thick (Cr3C2)75-(NiCr)25 coating is 37  4 GPa at 
the modulus of elasticity Å  483 GPa. 
 In Fig. 7 we present the fragments of the diffraction patterns obtained 
on the nanocomposite combined Ti-Si-N/(Cr3C2)75-(NiCr)25 coating. Results of 
the diffraction analysis and calculations for the coating structure parame-
ters are represented in Table 1. 
 In the coating the main phases are Cr3Ni2 (the thick bottom coating) and 
(Ti;Si)N and TiN (the top coating layer). Besides, there are additional phases 
of pure Cr; and titanium oxide Ti9O17 is also present in a small concentration 
on the interphase boundary. 
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a 
 

 
b 

 

Fig. 4 – Energy spectrum of the Rutherford ion backscattering: on the thick WC-Co-
Cr coating (1 is the experimental spectrum of WC-Co-Cr) (a); obtained from the thin 
top Ti-Si-N/WC-Co-Cr coating (1 is the simulated spectrum; 2 is the experimental 
spectrum of Ti-Si) (b) 
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Fig. 5 – Fragments of the diffraction pattern obtained from the surface region of the 
nanocomposite combined Ti-Si-N/WC-Co-Cr coating deposited on the ChS-42 steel 
substrate 
 
 
 

 
 

Fig. 6 – Dependences “load-reload” for different indenting depths of the Berkovich 
indenter in the nanocomposite Ti-Si-N/(Cr3C2)75(NiCr)25 coating 
 

 In view of the low Si content the superposition of diffraction peaks of 
(Ti;Si)N and TiN phases occurs, and (Ti;Si)N is the solid solution based on 
TiN (Si intrusion). These phases are well separated on the angles 72-73î. 
 In Fig. 8 we present regions of the thick bottom (Cr3C)75-(NiCr)25 coating 
and distribution of the X-radiation intensities of the base elements. The main 
composition of this coating is nickel (Ni  36 at%) and chrome (Cr  64 at%), 
C, O and Si are also present. 
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Fig. 7 – Part of the diffraction pattern of the nanocomposite combined Ti-Si-N/ 
(Cr3C2)75-(NiCr)25 coating 
 
 
 

Table 1 – Calculation results of the coating parameters and structure 
 

No/ 
Par. 

Angle Square Intensity Half-width Interplanar 
spacing 

% Max. Phase hkl 

1 28,437 8,511 37 0,4512 3,6416 100,00 Ti9O17 
106 
004 

2 30,648 3,083 13 0,4518 3,3845 36,84 Ti9O17 
0210 
123 

3 42,771 10,885 20 1,0490 2,4530 65,79 Ti-Si-N 
TiN 

111 
111 

4 49,332 13,862 13 1,9890 2,1433 34,21 Cr3Ni2 
Ti-Si-N 

321 
200 

5 49,993 17,418 15 2,2322 2,1168 39,47 TiN 
Ti9O17 

200 
1223 
110 

6 50,533 6,528 12 1,0335 2,0956 44,74 Cr3Ni2 330 

7 52,134 2,782 15 0,3553 2,0355 39,47 
Cr3Ni2 

Cr 
Ni 

202 
110 
111 

8 72,500 18,056 18 1,8950 1,5127 47,37 Ti9O17 
Ti-Si-N 

3130 
220 

9 73,040 11,106 13 1,5950 1,5030 52,63 TiN 220 
 

 Since the thin top coating has very small thickness, it is difficult to extract 
it on the cross-sections due to the large width of the detonation coating. 
There are areas in the coating corresponding to the pure nickel and chrome. 
In the nickel matrix (white region) there is substantial amount of chrome 
inclusions (grains): fine (< 1 m), middle (4-5 m) and coarse (15-20 m). 
White region is rich in Ni (up to 90 at%), and grey region is rich in Cr (up 
to 92 at%). Due to the small thickness of Ti-Si-N layer in these experiments 
we could not determine using microanalysis the composition and thickness, 
and also because of the restriction of the element composition detection (nitro-
gen, carbon, oxygen). However, while obtaining the oblique cross-sections at 
the angle of 7î, we could reveal the element composition of the thin Ti-Si-N 
coating and of the thick bottom (Cr3-C2)75-(NiCr)25 coating taking 10-12 points 
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of the oblique cross-section and using another scanning microscope with better 
energy resolution. 
 

 

 
 

Fig. 8 – Parts of the cross-sections of the combined coatings obtained by the scanning 
electron microscopy: lines of the element analysis obtained by the EMF (1 – Cr, 2 –
 Ni, 3 – C, 4 – Fe) (a, b); the element distribution over the depth of the combined Ti-
Si-N(Cr3C2-Ni)-(NiCr)25 coating on the regions shown in Fig. 8a, b (1 – Cr, 2 – Ni, 
3 – C, 4 – Fe, 5 – O) (c, d) 
 
4. CONCLUSIONS 
 

Nanocomposite combined Ti-Si-N/WC-Co-Cr and Ti-Si-N/(Cr3C2)75(NiCr)25 
coatings with the thickness > 100 m are obtained and investigated. Found 
that the grain size of the thin coatings formed by (Ti;Si)N and TiN phases at 
the hardness of 38 GPa was  25 nm for the first series of the samples. For 
the second series the grain size was lesser (about 15 nm) at the coating hard-
ness of 42-44 GPa and the same composition of (Ti;Si)N and TiN phases. Si 
and N concentrations varied from 10 at% (Ti) to 5 at% (Si) and from 30 at% 
to 20 at% (for N). 
 We have also found the substantial increase in the wear resistance at the 
cylinder abrasion on the sample plane and in the corrosion resistance at the 
rise of other mechanical characteristics. 
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